Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen)
Let E/F be a finite and Galois extension of non-archimedean local fields. Let G be a connected reductive group defined over E and let M:=RE/FG be the reductive group over F obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transiti...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2022-04, Vol.233, p.24-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 24 |
container_title | Journal of number theory |
container_volume | 233 |
creator | Aubert, Anne-Marie Plymen, Roger |
description | Let E/F be a finite and Galois extension of non-archimedean local fields. Let G be a connected reductive group defined over E and let M:=RE/FG be the reductive group over F obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transition from G(E) to M(F). We obtain a depth-comparison formula for Weil-restricted groups. |
doi_str_mv | 10.1016/j.jnt.2021.06.003 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03091590v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X21001992</els_id><sourcerecordid>oai_HAL_hal_03091590v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3553-a7d0eec3d137b6505ad42b4b98e487a668ddb77f13960877f6085e705d62796a3</originalsourceid><addsrcrecordid>eNp9kMtO5DAQRS3ESDQMH8DOS1gklOO2k4gVatE81BIbRjM7y7ErtFvBjuzw_If5Z9xqZpZsqkq36l6pDiEnDEoGTJ5vyo2fygoqVoIsAfgemTFoZcGkaPbJDKCqCs7mfw7IYUobAMZELWbk7yI8jTq6FDwNPZ3WSC2O0zrRLHRhWtPkLKZ_uyEYPdCV9o-D9jZRE2LENAZv0RukfYj0N7qhyOIUnZnQ0scYnsdET19dDtOe6nFEb90b7d7pHabkjKZL56cP9Gc_yY9eDwmPv_oR-bW8eljcFKv769vF5aowXAhe6NoCouGW8bqTAoS286qbd22D86bWUjbWdnXdM95KaPKQq8AahJVV3UrNj8jZLnetBzVG96TjuwraqZvLldpqwKFlooUXlm_Z7tbEkFLE_r-BgdqyVxuV2astewVSZfbZc7HzYH7ixWFUybgtIesimknZ4L5xfwJIFo13</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Aubert, Anne-Marie ; Plymen, Roger</creator><creatorcontrib>Aubert, Anne-Marie ; Plymen, Roger</creatorcontrib><description>Let E/F be a finite and Galois extension of non-archimedean local fields. Let G be a connected reductive group defined over E and let M:=RE/FG be the reductive group over F obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transition from G(E) to M(F). We obtain a depth-comparison formula for Weil-restricted groups.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2021.06.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Depth ; Enhanced local Langlands correspondence ; Local field ; Mathematics ; Number Theory ; Representation Theory ; Weil-restricted groups</subject><ispartof>Journal of number theory, 2022-04, Vol.233, p.24-58</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3553-a7d0eec3d137b6505ad42b4b98e487a668ddb77f13960877f6085e705d62796a3</citedby><cites>FETCH-LOGICAL-c3553-a7d0eec3d137b6505ad42b4b98e487a668ddb77f13960877f6085e705d62796a3</cites><orcidid>0000-0002-2071-6925 ; 0000-0002-9613-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnt.2021.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03091590$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aubert, Anne-Marie</creatorcontrib><creatorcontrib>Plymen, Roger</creatorcontrib><title>Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen)</title><title>Journal of number theory</title><description>Let E/F be a finite and Galois extension of non-archimedean local fields. Let G be a connected reductive group defined over E and let M:=RE/FG be the reductive group over F obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transition from G(E) to M(F). We obtain a depth-comparison formula for Weil-restricted groups.</description><subject>Depth</subject><subject>Enhanced local Langlands correspondence</subject><subject>Local field</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Representation Theory</subject><subject>Weil-restricted groups</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO5DAQRS3ESDQMH8DOS1gklOO2k4gVatE81BIbRjM7y7ErtFvBjuzw_If5Z9xqZpZsqkq36l6pDiEnDEoGTJ5vyo2fygoqVoIsAfgemTFoZcGkaPbJDKCqCs7mfw7IYUobAMZELWbk7yI8jTq6FDwNPZ3WSC2O0zrRLHRhWtPkLKZ_uyEYPdCV9o-D9jZRE2LENAZv0RukfYj0N7qhyOIUnZnQ0scYnsdET19dDtOe6nFEb90b7d7pHabkjKZL56cP9Gc_yY9eDwmPv_oR-bW8eljcFKv769vF5aowXAhe6NoCouGW8bqTAoS286qbd22D86bWUjbWdnXdM95KaPKQq8AahJVV3UrNj8jZLnetBzVG96TjuwraqZvLldpqwKFlooUXlm_Z7tbEkFLE_r-BgdqyVxuV2astewVSZfbZc7HzYH7ixWFUybgtIesimknZ4L5xfwJIFo13</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Aubert, Anne-Marie</creator><creator>Plymen, Roger</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2071-6925</orcidid><orcidid>https://orcid.org/0000-0002-9613-9140</orcidid></search><sort><creationdate>202204</creationdate><title>Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen)</title><author>Aubert, Anne-Marie ; Plymen, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3553-a7d0eec3d137b6505ad42b4b98e487a668ddb77f13960877f6085e705d62796a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Depth</topic><topic>Enhanced local Langlands correspondence</topic><topic>Local field</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Representation Theory</topic><topic>Weil-restricted groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubert, Anne-Marie</creatorcontrib><creatorcontrib>Plymen, Roger</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubert, Anne-Marie</au><au>Plymen, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen)</atitle><jtitle>Journal of number theory</jtitle><date>2022-04</date><risdate>2022</risdate><volume>233</volume><spage>24</spage><epage>58</epage><pages>24-58</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>Let E/F be a finite and Galois extension of non-archimedean local fields. Let G be a connected reductive group defined over E and let M:=RE/FG be the reductive group over F obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transition from G(E) to M(F). We obtain a depth-comparison formula for Weil-restricted groups.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2021.06.003</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-2071-6925</orcidid><orcidid>https://orcid.org/0000-0002-9613-9140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-314X |
ispartof | Journal of number theory, 2022-04, Vol.233, p.24-58 |
issn | 0022-314X 1096-1658 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03091590v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Depth Enhanced local Langlands correspondence Local field Mathematics Number Theory Representation Theory Weil-restricted groups |
title | Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with an appendix by Jessica Fintzen) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20depths%20on%20both%20sides%20of%20the%20local%20Langlands%20correspondence%20for%20Weil-restricted%20groups%20(with%20an%20appendix%20by%20Jessica%20Fintzen)&rft.jtitle=Journal%20of%20number%20theory&rft.au=Aubert,%20Anne-Marie&rft.date=2022-04&rft.volume=233&rft.spage=24&rft.epage=58&rft.pages=24-58&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2021.06.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03091590v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022314X21001992&rfr_iscdi=true |