Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming

Wireless communication is a key technology for the Internet of Things (IoT). Due to its open nature, the physical layer of wireless systems is a high-priority target for an adversary whose goal is to disrupt the normal behavior of the system. In particular, jamming attacks are one of the most straig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2021-03, Vol.187, p.107751, Article 107751
Hauptverfasser: Navas, Renzo E., Cuppens, Frédéric, Boulahia Cuppens, Nora, Toutain, Laurent, Papadopoulos, Georgios Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107751
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 187
creator Navas, Renzo E.
Cuppens, Frédéric
Boulahia Cuppens, Nora
Toutain, Laurent
Papadopoulos, Georgios Z.
description Wireless communication is a key technology for the Internet of Things (IoT). Due to its open nature, the physical layer of wireless systems is a high-priority target for an adversary whose goal is to disrupt the normal behavior of the system. In particular, jamming attacks are one of the most straightforward and effective types of attacks: information flow of the system is stopped or severely disturbed. In this paper, we propose a method to improve the jamming resilience of IoT systems based on Direct-Sequence Spread-Spectrum (DSSS) techniques. Our proposal is inspired by the Moving Target Defense (MTD) paradigm. MTD strategies randomize components of a system, increasing the effort an attacker needs to compromise the system. We use state-of-the-art Cryptographically Secure Pseudo-Random Number Generators outputs as spreading sequences for DSSS. The sequences of the proposed system are generated in an ad-hoc, independent, and distributed way. We show probabilistically that the generated sequences have robust cross-correlation properties. We define a multi-user system model to evaluate the Bit-Error-Rate of our proposal in the presence of two types of jammers: a classical band-limited Gaussian noise jammer, and an insider smart jammer with knowledge of one spreading sequence used in the system. Our proposal proactively mitigates the insider jammer attack. We quantify the insider smart jammer resilience of a system implementing our proposal, as a function of the length of the spreading sequences and the jammer power.
doi_str_mv 10.1016/j.comnet.2020.107751
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03088384v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128620313323</els_id><sourcerecordid>oai_HAL_hal_03088384v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-da5ddb8c8e91e9d25ca0e2ad4795a141590c4e976ff4befe67d36f4f6c4549613</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKf_wIvcetGZtGmaeiEMvzYYKGxehyw53bJ1zUyyScEfb2vFS2_OF-d9D-eJomuCRwQTdrsZKburIYwSnHSjPM_ISTQgPE_iHLPitK1TXsQk4ew8uvB-gzGmNOGD6Ott3XijZIUceFMZqBWgYJGpvdHgkAxBqq1vezS1C9Qe-bRu6-_QtNawhzbUASnX7INdOblfd1ZVgzyog4M2fRw6R49K69DjfD5Hsg4m3sjdztSry-islJWHq988jN6fnxYPk3j2-jJ9GM9ilXIWYi0zrZdccSgIFDrJlMSQSE3zIpOEkqzAikKRs7KkSyiB5TplJS2ZohktGEmH0U3vu5aV2Duzk64RVhoxGc9EN8Mp5jzl9Ji0u7TfVc5676D8ExAsOtpiI3raoqMtetqt7L6XQfvH0YATXv3A1MaBCkJb87_BN4aTjPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming</title><source>Elsevier ScienceDirect Journals</source><creator>Navas, Renzo E. ; Cuppens, Frédéric ; Boulahia Cuppens, Nora ; Toutain, Laurent ; Papadopoulos, Georgios Z.</creator><creatorcontrib>Navas, Renzo E. ; Cuppens, Frédéric ; Boulahia Cuppens, Nora ; Toutain, Laurent ; Papadopoulos, Georgios Z.</creatorcontrib><description>Wireless communication is a key technology for the Internet of Things (IoT). Due to its open nature, the physical layer of wireless systems is a high-priority target for an adversary whose goal is to disrupt the normal behavior of the system. In particular, jamming attacks are one of the most straightforward and effective types of attacks: information flow of the system is stopped or severely disturbed. In this paper, we propose a method to improve the jamming resilience of IoT systems based on Direct-Sequence Spread-Spectrum (DSSS) techniques. Our proposal is inspired by the Moving Target Defense (MTD) paradigm. MTD strategies randomize components of a system, increasing the effort an attacker needs to compromise the system. We use state-of-the-art Cryptographically Secure Pseudo-Random Number Generators outputs as spreading sequences for DSSS. The sequences of the proposed system are generated in an ad-hoc, independent, and distributed way. We show probabilistically that the generated sequences have robust cross-correlation properties. We define a multi-user system model to evaluate the Bit-Error-Rate of our proposal in the presence of two types of jammers: a classical band-limited Gaussian noise jammer, and an insider smart jammer with knowledge of one spreading sequence used in the system. Our proposal proactively mitigates the insider jammer attack. We quantify the insider smart jammer resilience of a system implementing our proposal, as a function of the length of the spreading sequences and the jammer power.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2020.107751</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anti-jamming ; Computer Science ; Cross-correlation ; Cryptographically secure pseudo-random ; Cryptography and Security ; Direct-sequence spread-spectrum ; Internet of Things ; Moving target defense ; Networking and Internet Architecture</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2021-03, Vol.187, p.107751, Article 107751</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-da5ddb8c8e91e9d25ca0e2ad4795a141590c4e976ff4befe67d36f4f6c4549613</citedby><cites>FETCH-LOGICAL-c386t-da5ddb8c8e91e9d25ca0e2ad4795a141590c4e976ff4befe67d36f4f6c4549613</cites><orcidid>0000-0002-0331-0579 ; 0000-0002-8784-7444 ; 0000-0001-9038-499X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389128620313323$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03088384$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Navas, Renzo E.</creatorcontrib><creatorcontrib>Cuppens, Frédéric</creatorcontrib><creatorcontrib>Boulahia Cuppens, Nora</creatorcontrib><creatorcontrib>Toutain, Laurent</creatorcontrib><creatorcontrib>Papadopoulos, Georgios Z.</creatorcontrib><title>Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Wireless communication is a key technology for the Internet of Things (IoT). Due to its open nature, the physical layer of wireless systems is a high-priority target for an adversary whose goal is to disrupt the normal behavior of the system. In particular, jamming attacks are one of the most straightforward and effective types of attacks: information flow of the system is stopped or severely disturbed. In this paper, we propose a method to improve the jamming resilience of IoT systems based on Direct-Sequence Spread-Spectrum (DSSS) techniques. Our proposal is inspired by the Moving Target Defense (MTD) paradigm. MTD strategies randomize components of a system, increasing the effort an attacker needs to compromise the system. We use state-of-the-art Cryptographically Secure Pseudo-Random Number Generators outputs as spreading sequences for DSSS. The sequences of the proposed system are generated in an ad-hoc, independent, and distributed way. We show probabilistically that the generated sequences have robust cross-correlation properties. We define a multi-user system model to evaluate the Bit-Error-Rate of our proposal in the presence of two types of jammers: a classical band-limited Gaussian noise jammer, and an insider smart jammer with knowledge of one spreading sequence used in the system. Our proposal proactively mitigates the insider jammer attack. We quantify the insider smart jammer resilience of a system implementing our proposal, as a function of the length of the spreading sequences and the jammer power.</description><subject>Anti-jamming</subject><subject>Computer Science</subject><subject>Cross-correlation</subject><subject>Cryptographically secure pseudo-random</subject><subject>Cryptography and Security</subject><subject>Direct-sequence spread-spectrum</subject><subject>Internet of Things</subject><subject>Moving target defense</subject><subject>Networking and Internet Architecture</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKf_wIvcetGZtGmaeiEMvzYYKGxehyw53bJ1zUyyScEfb2vFS2_OF-d9D-eJomuCRwQTdrsZKburIYwSnHSjPM_ISTQgPE_iHLPitK1TXsQk4ew8uvB-gzGmNOGD6Ott3XijZIUceFMZqBWgYJGpvdHgkAxBqq1vezS1C9Qe-bRu6-_QtNawhzbUASnX7INdOblfd1ZVgzyog4M2fRw6R49K69DjfD5Hsg4m3sjdztSry-islJWHq988jN6fnxYPk3j2-jJ9GM9ilXIWYi0zrZdccSgIFDrJlMSQSE3zIpOEkqzAikKRs7KkSyiB5TplJS2ZohktGEmH0U3vu5aV2Duzk64RVhoxGc9EN8Mp5jzl9Ji0u7TfVc5676D8ExAsOtpiI3raoqMtetqt7L6XQfvH0YATXv3A1MaBCkJb87_BN4aTjPM</recordid><startdate>20210314</startdate><enddate>20210314</enddate><creator>Navas, Renzo E.</creator><creator>Cuppens, Frédéric</creator><creator>Boulahia Cuppens, Nora</creator><creator>Toutain, Laurent</creator><creator>Papadopoulos, Georgios Z.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0331-0579</orcidid><orcidid>https://orcid.org/0000-0002-8784-7444</orcidid><orcidid>https://orcid.org/0000-0001-9038-499X</orcidid></search><sort><creationdate>20210314</creationdate><title>Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming</title><author>Navas, Renzo E. ; Cuppens, Frédéric ; Boulahia Cuppens, Nora ; Toutain, Laurent ; Papadopoulos, Georgios Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-da5ddb8c8e91e9d25ca0e2ad4795a141590c4e976ff4befe67d36f4f6c4549613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-jamming</topic><topic>Computer Science</topic><topic>Cross-correlation</topic><topic>Cryptographically secure pseudo-random</topic><topic>Cryptography and Security</topic><topic>Direct-sequence spread-spectrum</topic><topic>Internet of Things</topic><topic>Moving target defense</topic><topic>Networking and Internet Architecture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navas, Renzo E.</creatorcontrib><creatorcontrib>Cuppens, Frédéric</creatorcontrib><creatorcontrib>Boulahia Cuppens, Nora</creatorcontrib><creatorcontrib>Toutain, Laurent</creatorcontrib><creatorcontrib>Papadopoulos, Georgios Z.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navas, Renzo E.</au><au>Cuppens, Frédéric</au><au>Boulahia Cuppens, Nora</au><au>Toutain, Laurent</au><au>Papadopoulos, Georgios Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2021-03-14</date><risdate>2021</risdate><volume>187</volume><spage>107751</spage><pages>107751-</pages><artnum>107751</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Wireless communication is a key technology for the Internet of Things (IoT). Due to its open nature, the physical layer of wireless systems is a high-priority target for an adversary whose goal is to disrupt the normal behavior of the system. In particular, jamming attacks are one of the most straightforward and effective types of attacks: information flow of the system is stopped or severely disturbed. In this paper, we propose a method to improve the jamming resilience of IoT systems based on Direct-Sequence Spread-Spectrum (DSSS) techniques. Our proposal is inspired by the Moving Target Defense (MTD) paradigm. MTD strategies randomize components of a system, increasing the effort an attacker needs to compromise the system. We use state-of-the-art Cryptographically Secure Pseudo-Random Number Generators outputs as spreading sequences for DSSS. The sequences of the proposed system are generated in an ad-hoc, independent, and distributed way. We show probabilistically that the generated sequences have robust cross-correlation properties. We define a multi-user system model to evaluate the Bit-Error-Rate of our proposal in the presence of two types of jammers: a classical band-limited Gaussian noise jammer, and an insider smart jammer with knowledge of one spreading sequence used in the system. Our proposal proactively mitigates the insider jammer attack. We quantify the insider smart jammer resilience of a system implementing our proposal, as a function of the length of the spreading sequences and the jammer power.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2020.107751</doi><orcidid>https://orcid.org/0000-0002-0331-0579</orcidid><orcidid>https://orcid.org/0000-0002-8784-7444</orcidid><orcidid>https://orcid.org/0000-0001-9038-499X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2021-03, Vol.187, p.107751, Article 107751
issn 1389-1286
1872-7069
language eng
recordid cdi_hal_primary_oai_HAL_hal_03088384v2
source Elsevier ScienceDirect Journals
subjects Anti-jamming
Computer Science
Cross-correlation
Cryptographically secure pseudo-random
Cryptography and Security
Direct-sequence spread-spectrum
Internet of Things
Moving target defense
Networking and Internet Architecture
title Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20resilience%20to%20insider%20attacks%20in%20IoT%20networks:%20Independent%20cryptographically%20secure%20sequences%20for%20DSSS%20anti-jamming&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Navas,%20Renzo%20E.&rft.date=2021-03-14&rft.volume=187&rft.spage=107751&rft.pages=107751-&rft.artnum=107751&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2020.107751&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03088384v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1389128620313323&rfr_iscdi=true