Multipatch isogeometric mortar methods for thick shells
This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on aug...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-12, Vol.372, p.113403, Article 113403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113403 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 372 |
creator | Adam, Nicolas Le Tallec, Patrick Zarroug, Malek |
description | This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian formulations, to the choice and validation of mortar spaces, and to the derivation of adequate integration rules. The relevance of the proposed approach is assessed numerically on various significative examples.
•Modelization of multipatch Reissner–Mindlin isogeometric shells.•Development of industrially oriented coupling strategies.•Combination of mortar discretizations and augmented lagrangian formulations.•Convergence of mortar methods for isogeometric shells with cross point modifications.•Development of reduced quadrature rules for surface and interface integrals.•Numerical validations on academic and industrial examples. |
doi_str_mv | 10.1016/j.cma.2020.113403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03088221v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520305880</els_id><sourcerecordid>2477709543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-cae4f1617c9b82d3df639e400b1a31f677c955f33a77a6d5388069dba58215ae3</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMIHsEViYkjw2XHsiKmqgCIVscBsuY5DHJK62G4l_h5XQYzccnp37z3dPYSuAReAobrrCz2qgmCSMNAS0xM0A8HrnAAVp2iGcclyLgg7Rxch9DiVADJD_GU_RLtTUXeZDe7DuNFEb3U2Oh-VzxLqXBOy1vksdlZ_ZqEzwxAu0VmrhmCufvscvT8-vC1X-fr16Xm5WOe6xCTmWpmyhQq4rjeCNLRpK1qbEuMNKAptxdOCsZZSxbmqGkaFwFXdbBQTBJgydI5uJ99ODXLn7aj8t3TKytViLY8zTLEQhMABEvdm4u68-9qbEGXv9n6bzpOk5JzjmpU0sWBiae9C8Kb9swUsj1nKXqYs5TFLOWWZNPeTxqRXD9Z4GbQ1W20a642OsnH2H_UPUTR59A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477709543</pqid></control><display><type>article</type><title>Multipatch isogeometric mortar methods for thick shells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Adam, Nicolas ; Le Tallec, Patrick ; Zarroug, Malek</creator><creatorcontrib>Adam, Nicolas ; Le Tallec, Patrick ; Zarroug, Malek</creatorcontrib><description>This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian formulations, to the choice and validation of mortar spaces, and to the derivation of adequate integration rules. The relevance of the proposed approach is assessed numerically on various significative examples.
•Modelization of multipatch Reissner–Mindlin isogeometric shells.•Development of industrially oriented coupling strategies.•Combination of mortar discretizations and augmented lagrangian formulations.•Convergence of mortar methods for isogeometric shells with cross point modifications.•Development of reduced quadrature rules for surface and interface integrals.•Numerical validations on academic and industrial examples.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113403</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Convergence assessment ; Engineering Sciences ; Materials and structures in mechanics ; Mechanics ; Mortar methods ; Mortars (material) ; Multipatch isogeometric analysis ; Reduced integration ; Reissner–Mindlin shells</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-12, Vol.372, p.113403, Article 113403</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-cae4f1617c9b82d3df639e400b1a31f677c955f33a77a6d5388069dba58215ae3</citedby><cites>FETCH-LOGICAL-c402t-cae4f1617c9b82d3df639e400b1a31f677c955f33a77a6d5388069dba58215ae3</cites><orcidid>0000-0002-3825-1943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2020.113403$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03088221$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, Nicolas</creatorcontrib><creatorcontrib>Le Tallec, Patrick</creatorcontrib><creatorcontrib>Zarroug, Malek</creatorcontrib><title>Multipatch isogeometric mortar methods for thick shells</title><title>Computer methods in applied mechanics and engineering</title><description>This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian formulations, to the choice and validation of mortar spaces, and to the derivation of adequate integration rules. The relevance of the proposed approach is assessed numerically on various significative examples.
•Modelization of multipatch Reissner–Mindlin isogeometric shells.•Development of industrially oriented coupling strategies.•Combination of mortar discretizations and augmented lagrangian formulations.•Convergence of mortar methods for isogeometric shells with cross point modifications.•Development of reduced quadrature rules for surface and interface integrals.•Numerical validations on academic and industrial examples.</description><subject>Convergence assessment</subject><subject>Engineering Sciences</subject><subject>Materials and structures in mechanics</subject><subject>Mechanics</subject><subject>Mortar methods</subject><subject>Mortars (material)</subject><subject>Multipatch isogeometric analysis</subject><subject>Reduced integration</subject><subject>Reissner–Mindlin shells</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ULFOwzAQtRBIlMIHsEViYkjw2XHsiKmqgCIVscBsuY5DHJK62G4l_h5XQYzccnp37z3dPYSuAReAobrrCz2qgmCSMNAS0xM0A8HrnAAVp2iGcclyLgg7Rxch9DiVADJD_GU_RLtTUXeZDe7DuNFEb3U2Oh-VzxLqXBOy1vksdlZ_ZqEzwxAu0VmrhmCufvscvT8-vC1X-fr16Xm5WOe6xCTmWpmyhQq4rjeCNLRpK1qbEuMNKAptxdOCsZZSxbmqGkaFwFXdbBQTBJgydI5uJ99ODXLn7aj8t3TKytViLY8zTLEQhMABEvdm4u68-9qbEGXv9n6bzpOk5JzjmpU0sWBiae9C8Kb9swUsj1nKXqYs5TFLOWWZNPeTxqRXD9Z4GbQ1W20a642OsnH2H_UPUTR59A</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Adam, Nicolas</creator><creator>Le Tallec, Patrick</creator><creator>Zarroug, Malek</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3825-1943</orcidid></search><sort><creationdate>20201201</creationdate><title>Multipatch isogeometric mortar methods for thick shells</title><author>Adam, Nicolas ; Le Tallec, Patrick ; Zarroug, Malek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-cae4f1617c9b82d3df639e400b1a31f677c955f33a77a6d5388069dba58215ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence assessment</topic><topic>Engineering Sciences</topic><topic>Materials and structures in mechanics</topic><topic>Mechanics</topic><topic>Mortar methods</topic><topic>Mortars (material)</topic><topic>Multipatch isogeometric analysis</topic><topic>Reduced integration</topic><topic>Reissner–Mindlin shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Nicolas</creatorcontrib><creatorcontrib>Le Tallec, Patrick</creatorcontrib><creatorcontrib>Zarroug, Malek</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Nicolas</au><au>Le Tallec, Patrick</au><au>Zarroug, Malek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipatch isogeometric mortar methods for thick shells</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>372</volume><spage>113403</spage><pages>113403-</pages><artnum>113403</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This paper introduces, analyzes and validates isogeometric mortar methods for the solution of thick shells problems which are set on a multipatch geometry. A particular attention will be devoted to the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian formulations, to the choice and validation of mortar spaces, and to the derivation of adequate integration rules. The relevance of the proposed approach is assessed numerically on various significative examples.
•Modelization of multipatch Reissner–Mindlin isogeometric shells.•Development of industrially oriented coupling strategies.•Combination of mortar discretizations and augmented lagrangian formulations.•Convergence of mortar methods for isogeometric shells with cross point modifications.•Development of reduced quadrature rules for surface and interface integrals.•Numerical validations on academic and industrial examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113403</doi><orcidid>https://orcid.org/0000-0002-3825-1943</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2020-12, Vol.372, p.113403, Article 113403 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03088221v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Convergence assessment Engineering Sciences Materials and structures in mechanics Mechanics Mortar methods Mortars (material) Multipatch isogeometric analysis Reduced integration Reissner–Mindlin shells |
title | Multipatch isogeometric mortar methods for thick shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipatch%20isogeometric%20mortar%20methods%20for%20thick%20shells&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Adam,%20Nicolas&rft.date=2020-12-01&rft.volume=372&rft.spage=113403&rft.pages=113403-&rft.artnum=113403&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113403&rft_dat=%3Cproquest_hal_p%3E2477709543%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477709543&rft_id=info:pmid/&rft_els_id=S0045782520305880&rfr_iscdi=true |