Evidence of charge density wave transverse pinning by x-ray microdiffraction

Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this nontrivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-03, Vol.101 (12), p.1, Article 125122
Hauptverfasser: Bellec, E., Gonzalez-Vallejo, I., Jacques, V. L. R., Sinchenko, A. A., Orlov, A. P., Monceau, P., Leake, S. J., Le Bolloc'h, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. B
container_volume 101
creator Bellec, E.
Gonzalez-Vallejo, I.
Jacques, V. L. R.
Sinchenko, A. A.
Orlov, A. P.
Monceau, P.
Leake, S. J.
Le Bolloc'h, D.
description Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this nontrivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic transport. Solitons could come from the relaxation of the strained CDW within an elastic-to-plastic transition. However, the nucleation process and the transport of these charged topological objects have never been observed at the local scale until now. In this paper, we use in situ scanning x-ray microdiffraction with micrometer resolution of a NbSe3 sample designed to have sliding and nonsliding areas. Direct imaging of the charge density wave deformation is obtained using an analytical approach based on the phase gradient to disentangle the transverse from the longitudinal components over a large surface (90μm). We show that the CDW dissociates itself from the host lattice in the sliding regime and displays a large transverse deformation, ten times larger than the longitudinal one and strongly dependent on the amplitude and the direction of the applied currents. This deformation continuously extends across the macroscopic sample dimensions, over a distance 10 000 times greater than the CDW wavelength despite the presence of strong defects while remaining strongly pinned by the lateral surfaces. This two-dimensional quantitative study highlights the prominent role of the shear effect, which should be significant in the nucleation of solitons.
doi_str_mv 10.1103/PhysRevB.101.125122
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03085984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390664879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-392c6f627200d887f77c7f9f6a1023622e2ee321cb6778ab159685546596956a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gS8Bn3zovEnapHmcYzqhoIg-hzRLtoytnUlX7b-3o7qnc-_h43DvQeiWwJQQYA9vmy6-2_ZxSoBMCc0IpRdoRFMuEym5vDzPGVyjSYxbACAcpAA5QsWi9StbGYtrh81Gh7XF_R590-Fv3VrcBF3F1oZo8cFXla_WuOzwTxJ0h_fehHrlnQvaNL6ubtCV07toJ386Rp9Pi4_5Milen1_msyIxKaVNwiQ13HEqKMAqz4UTwggnHdcEKOOUWmoto8SUXIhclySTPM-ylPcqM67ZGN0PuRu9U4fg9zp0qtZeLWeFOnnAIM9knrakZ-8G9hDqr6ONjdrWx1D15ynKJHCe5kL2FBuo_qEYg3XnWALq1LL6b7k3iBpaZr_wem-R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390664879</pqid></control><display><type>article</type><title>Evidence of charge density wave transverse pinning by x-ray microdiffraction</title><source>American Physical Society Journals</source><creator>Bellec, E. ; Gonzalez-Vallejo, I. ; Jacques, V. L. R. ; Sinchenko, A. A. ; Orlov, A. P. ; Monceau, P. ; Leake, S. J. ; Le Bolloc'h, D.</creator><creatorcontrib>Bellec, E. ; Gonzalez-Vallejo, I. ; Jacques, V. L. R. ; Sinchenko, A. A. ; Orlov, A. P. ; Monceau, P. ; Leake, S. J. ; Le Bolloc'h, D.</creatorcontrib><description>Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this nontrivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic transport. Solitons could come from the relaxation of the strained CDW within an elastic-to-plastic transition. However, the nucleation process and the transport of these charged topological objects have never been observed at the local scale until now. In this paper, we use in situ scanning x-ray microdiffraction with micrometer resolution of a NbSe3 sample designed to have sliding and nonsliding areas. Direct imaging of the charge density wave deformation is obtained using an analytical approach based on the phase gradient to disentangle the transverse from the longitudinal components over a large surface (90μm). We show that the CDW dissociates itself from the host lattice in the sliding regime and displays a large transverse deformation, ten times larger than the longitudinal one and strongly dependent on the amplitude and the direction of the applied currents. This deformation continuously extends across the macroscopic sample dimensions, over a distance 10 000 times greater than the CDW wavelength despite the presence of strong defects while remaining strongly pinned by the lateral surfaces. This two-dimensional quantitative study highlights the prominent role of the shear effect, which should be significant in the nucleation of solitons.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.125122</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Charge density waves ; Condensed Matter ; Deformation ; Nucleation ; Physics ; Sliding ; Solitary waves ; Strongly Correlated Electrons ; Transport</subject><ispartof>Physical review. B, 2020-03, Vol.101 (12), p.1, Article 125122</ispartof><rights>Copyright American Physical Society Mar 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-392c6f627200d887f77c7f9f6a1023622e2ee321cb6778ab159685546596956a3</citedby><cites>FETCH-LOGICAL-c422t-392c6f627200d887f77c7f9f6a1023622e2ee321cb6778ab159685546596956a3</cites><orcidid>0000-0003-1640-0386 ; 0000-0001-7901-1471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03085984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellec, E.</creatorcontrib><creatorcontrib>Gonzalez-Vallejo, I.</creatorcontrib><creatorcontrib>Jacques, V. L. R.</creatorcontrib><creatorcontrib>Sinchenko, A. A.</creatorcontrib><creatorcontrib>Orlov, A. P.</creatorcontrib><creatorcontrib>Monceau, P.</creatorcontrib><creatorcontrib>Leake, S. J.</creatorcontrib><creatorcontrib>Le Bolloc'h, D.</creatorcontrib><title>Evidence of charge density wave transverse pinning by x-ray microdiffraction</title><title>Physical review. B</title><description>Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this nontrivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic transport. Solitons could come from the relaxation of the strained CDW within an elastic-to-plastic transition. However, the nucleation process and the transport of these charged topological objects have never been observed at the local scale until now. In this paper, we use in situ scanning x-ray microdiffraction with micrometer resolution of a NbSe3 sample designed to have sliding and nonsliding areas. Direct imaging of the charge density wave deformation is obtained using an analytical approach based on the phase gradient to disentangle the transverse from the longitudinal components over a large surface (90μm). We show that the CDW dissociates itself from the host lattice in the sliding regime and displays a large transverse deformation, ten times larger than the longitudinal one and strongly dependent on the amplitude and the direction of the applied currents. This deformation continuously extends across the macroscopic sample dimensions, over a distance 10 000 times greater than the CDW wavelength despite the presence of strong defects while remaining strongly pinned by the lateral surfaces. This two-dimensional quantitative study highlights the prominent role of the shear effect, which should be significant in the nucleation of solitons.</description><subject>Charge density waves</subject><subject>Condensed Matter</subject><subject>Deformation</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Sliding</subject><subject>Solitary waves</subject><subject>Strongly Correlated Electrons</subject><subject>Transport</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gS8Bn3zovEnapHmcYzqhoIg-hzRLtoytnUlX7b-3o7qnc-_h43DvQeiWwJQQYA9vmy6-2_ZxSoBMCc0IpRdoRFMuEym5vDzPGVyjSYxbACAcpAA5QsWi9StbGYtrh81Gh7XF_R590-Fv3VrcBF3F1oZo8cFXla_WuOzwTxJ0h_fehHrlnQvaNL6ubtCV07toJ386Rp9Pi4_5Milen1_msyIxKaVNwiQ13HEqKMAqz4UTwggnHdcEKOOUWmoto8SUXIhclySTPM-ylPcqM67ZGN0PuRu9U4fg9zp0qtZeLWeFOnnAIM9knrakZ-8G9hDqr6ONjdrWx1D15ynKJHCe5kL2FBuo_qEYg3XnWALq1LL6b7k3iBpaZr_wem-R</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Bellec, E.</creator><creator>Gonzalez-Vallejo, I.</creator><creator>Jacques, V. L. R.</creator><creator>Sinchenko, A. A.</creator><creator>Orlov, A. P.</creator><creator>Monceau, P.</creator><creator>Leake, S. J.</creator><creator>Le Bolloc'h, D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><orcidid>https://orcid.org/0000-0001-7901-1471</orcidid></search><sort><creationdate>20200324</creationdate><title>Evidence of charge density wave transverse pinning by x-ray microdiffraction</title><author>Bellec, E. ; Gonzalez-Vallejo, I. ; Jacques, V. L. R. ; Sinchenko, A. A. ; Orlov, A. P. ; Monceau, P. ; Leake, S. J. ; Le Bolloc'h, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-392c6f627200d887f77c7f9f6a1023622e2ee321cb6778ab159685546596956a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge density waves</topic><topic>Condensed Matter</topic><topic>Deformation</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Sliding</topic><topic>Solitary waves</topic><topic>Strongly Correlated Electrons</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellec, E.</creatorcontrib><creatorcontrib>Gonzalez-Vallejo, I.</creatorcontrib><creatorcontrib>Jacques, V. L. R.</creatorcontrib><creatorcontrib>Sinchenko, A. A.</creatorcontrib><creatorcontrib>Orlov, A. P.</creatorcontrib><creatorcontrib>Monceau, P.</creatorcontrib><creatorcontrib>Leake, S. J.</creatorcontrib><creatorcontrib>Le Bolloc'h, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellec, E.</au><au>Gonzalez-Vallejo, I.</au><au>Jacques, V. L. R.</au><au>Sinchenko, A. A.</au><au>Orlov, A. P.</au><au>Monceau, P.</au><au>Leake, S. J.</au><au>Le Bolloc'h, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of charge density wave transverse pinning by x-ray microdiffraction</atitle><jtitle>Physical review. B</jtitle><date>2020-03-24</date><risdate>2020</risdate><volume>101</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125122</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this nontrivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic transport. Solitons could come from the relaxation of the strained CDW within an elastic-to-plastic transition. However, the nucleation process and the transport of these charged topological objects have never been observed at the local scale until now. In this paper, we use in situ scanning x-ray microdiffraction with micrometer resolution of a NbSe3 sample designed to have sliding and nonsliding areas. Direct imaging of the charge density wave deformation is obtained using an analytical approach based on the phase gradient to disentangle the transverse from the longitudinal components over a large surface (90μm). We show that the CDW dissociates itself from the host lattice in the sliding regime and displays a large transverse deformation, ten times larger than the longitudinal one and strongly dependent on the amplitude and the direction of the applied currents. This deformation continuously extends across the macroscopic sample dimensions, over a distance 10 000 times greater than the CDW wavelength despite the presence of strong defects while remaining strongly pinned by the lateral surfaces. This two-dimensional quantitative study highlights the prominent role of the shear effect, which should be significant in the nucleation of solitons.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.125122</doi><orcidid>https://orcid.org/0000-0003-1640-0386</orcidid><orcidid>https://orcid.org/0000-0001-7901-1471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-03, Vol.101 (12), p.1, Article 125122
issn 2469-9950
2469-9969
language eng
recordid cdi_hal_primary_oai_HAL_hal_03085984v1
source American Physical Society Journals
subjects Charge density waves
Condensed Matter
Deformation
Nucleation
Physics
Sliding
Solitary waves
Strongly Correlated Electrons
Transport
title Evidence of charge density wave transverse pinning by x-ray microdiffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20charge%20density%20wave%20transverse%20pinning%20by%20x-ray%20microdiffraction&rft.jtitle=Physical%20review.%20B&rft.au=Bellec,%20E.&rft.date=2020-03-24&rft.volume=101&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125122&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.125122&rft_dat=%3Cproquest_hal_p%3E2390664879%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390664879&rft_id=info:pmid/&rfr_iscdi=true