The Morphometry of Impact Craters on Bennu

Bennu is an ~500‐m‐diameter rubble‐pile asteroid that is the target of detailed study by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission. Here we use data from the OSIRIS‐REx Laser Altimeter to assess depth‐to‐diameter ratios (d/D) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-12, Vol.47 (24), p.n/a
Hauptverfasser: Daly, R. T., Bierhaus, E. B., Barnouin, O. S., Daly, M. G., Seabrook, J. A., Roberts, J. H., Ernst, C. M., Perry, M. E., Nair, H., Espiritu, R. C., Palmer, E. E., Gaskell, R. W., Weirich, J. R., Susorney, H. C. M., Johnson, C. L., Walsh, K. J., Nolan, M. C., Jawin, E. R., Michel, P., Trang, D., Lauretta, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Geophysical research letters
container_volume 47
creator Daly, R. T.
Bierhaus, E. B.
Barnouin, O. S.
Daly, M. G.
Seabrook, J. A.
Roberts, J. H.
Ernst, C. M.
Perry, M. E.
Nair, H.
Espiritu, R. C.
Palmer, E. E.
Gaskell, R. W.
Weirich, J. R.
Susorney, H. C. M.
Johnson, C. L.
Walsh, K. J.
Nolan, M. C.
Jawin, E. R.
Michel, P.
Trang, D.
Lauretta, D. S.
description Bennu is an ~500‐m‐diameter rubble‐pile asteroid that is the target of detailed study by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission. Here we use data from the OSIRIS‐REx Laser Altimeter to assess depth‐to‐diameter ratios (d/D) of 108 impact craters larger than 10 m in diameter. The d/D of craters on Bennu ranges from 0.02 to 0.19. The mean is 0.10 ± 0.03. The smallest craters show the broadest range in d/D, consistent with d/D measurements on other asteroids. A few craters have central mounds, which is interpreted as evidence that a more competent substrate lies a few meters beneath them. The range of d/D narrows as crater size increases, with craters larger than 80 m tending toward smaller d/D. At large scales, increases in target strength with depth, combined with target curvature, may affect crater morphometry. Plain Language Summary Between 2018 and 2020, National Aeronautics and Space Administration (NASA)'s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) spacecraft orbited a small asteroid called Bennu in preparation to collect a sample for return to Earth. Bennu is a “rubble‐pile” asteroid, meaning an aggregate of rock fragments that have coalesced together in space. OSIRIS‐REx observations showed that Bennu has many craters on its surface, which formed when other, smaller objects collided with it in the past. Crater depths and widths (diameters), in addition to relating to the size and speed of the impacting object, also reflect the physical characteristics of the impacted surface. Accordingly, we measured the depths and diameters of many of Bennu's craters to better understand the surface and interior properties of this rubble‐pile asteroid and how it compares to other asteroids. The smaller craters on Bennu have a variety of depths, even among similarly sized craters. The largest are so wide that they appear to be affected by the curvature of Bennu's surface and by the presence of stronger material at depth. We observe mounds inside some of the smaller craters, supporting the idea that a more competent substrate underlies the surface material. Key Points The depth‐to‐diameter ratio (d/D) of asteroid Bennu's craters >10 m in diameter ranges from 0.02 to 0.19 with a mean of 0.10 ± 0.03 Small craters show the greatest diversity in d/D, whereas larger craters (>80 m) span a narrower range in d/D and tend to be shallower For c
doi_str_mv 10.1029/2020GL089672
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03085217v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473254750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4675-3a01c892ebf0b8f6e3376a2b549d29cd66c2630b4dc79cb31d075ddaff912d623</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz8g4EkxOjv7lT3Woq0QEaSel81mQ1vabNykSv-9KRHx5GmG4eFleAm5pHBHAfU9AsIsh0xLhUdkRDXnaQagjskIQPc7KnlKztp2DQAMGB2Rm8XSJy8hNsuw9V3cJ6FKnreNdV0yjbbzsU1CnTz4ut6dk5PKblp_8TPH5P3pcTGdp_nr7Hk6yVPLpRIps0BdptEXFRRZJT1jSlosBNclaldK6VAyKHjplHYFoyUoUZa2qjTFUiIbk-shd2k3pomrrY17E-zKzCe5Odz61zOBVH3S3l4NtonhY-fbzqzDLtb9ewa5Yii4EtCr20G5GNo2-uo3loI5NGf-NtdzHPjXauP3_1oze8slFVqwb9Vqa74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473254750</pqid></control><display><type>article</type><title>The Morphometry of Impact Craters on Bennu</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Daly, R. T. ; Bierhaus, E. B. ; Barnouin, O. S. ; Daly, M. G. ; Seabrook, J. A. ; Roberts, J. H. ; Ernst, C. M. ; Perry, M. E. ; Nair, H. ; Espiritu, R. C. ; Palmer, E. E. ; Gaskell, R. W. ; Weirich, J. R. ; Susorney, H. C. M. ; Johnson, C. L. ; Walsh, K. J. ; Nolan, M. C. ; Jawin, E. R. ; Michel, P. ; Trang, D. ; Lauretta, D. S.</creator><creatorcontrib>Daly, R. T. ; Bierhaus, E. B. ; Barnouin, O. S. ; Daly, M. G. ; Seabrook, J. A. ; Roberts, J. H. ; Ernst, C. M. ; Perry, M. E. ; Nair, H. ; Espiritu, R. C. ; Palmer, E. E. ; Gaskell, R. W. ; Weirich, J. R. ; Susorney, H. C. M. ; Johnson, C. L. ; Walsh, K. J. ; Nolan, M. C. ; Jawin, E. R. ; Michel, P. ; Trang, D. ; Lauretta, D. S.</creatorcontrib><description>Bennu is an ~500‐m‐diameter rubble‐pile asteroid that is the target of detailed study by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission. Here we use data from the OSIRIS‐REx Laser Altimeter to assess depth‐to‐diameter ratios (d/D) of 108 impact craters larger than 10 m in diameter. The d/D of craters on Bennu ranges from 0.02 to 0.19. The mean is 0.10 ± 0.03. The smallest craters show the broadest range in d/D, consistent with d/D measurements on other asteroids. A few craters have central mounds, which is interpreted as evidence that a more competent substrate lies a few meters beneath them. The range of d/D narrows as crater size increases, with craters larger than 80 m tending toward smaller d/D. At large scales, increases in target strength with depth, combined with target curvature, may affect crater morphometry. Plain Language Summary Between 2018 and 2020, National Aeronautics and Space Administration (NASA)'s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) spacecraft orbited a small asteroid called Bennu in preparation to collect a sample for return to Earth. Bennu is a “rubble‐pile” asteroid, meaning an aggregate of rock fragments that have coalesced together in space. OSIRIS‐REx observations showed that Bennu has many craters on its surface, which formed when other, smaller objects collided with it in the past. Crater depths and widths (diameters), in addition to relating to the size and speed of the impacting object, also reflect the physical characteristics of the impacted surface. Accordingly, we measured the depths and diameters of many of Bennu's craters to better understand the surface and interior properties of this rubble‐pile asteroid and how it compares to other asteroids. The smaller craters on Bennu have a variety of depths, even among similarly sized craters. The largest are so wide that they appear to be affected by the curvature of Bennu's surface and by the presence of stronger material at depth. We observe mounds inside some of the smaller craters, supporting the idea that a more competent substrate underlies the surface material. Key Points The depth‐to‐diameter ratio (d/D) of asteroid Bennu's craters &gt;10 m in diameter ranges from 0.02 to 0.19 with a mean of 0.10 ± 0.03 Small craters show the greatest diversity in d/D, whereas larger craters (&gt;80 m) span a narrower range in d/D and tend to be shallower For craters &gt;80 m, increases in target strength with depth, combined with target curvature, likely contribute to smaller d/D</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL089672</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aeronautics ; Altimeters ; Apollo asteroids ; Asteroids ; Astrophysics ; Bennu ; crater morphometry ; Craters ; Curvature ; Depth ; depth‐diameter ratio ; Diameters ; Earth and Planetary Astrophysics ; Identification ; impact crater ; Laser altimeters ; Lasers ; Measuring instruments ; Morphometry ; Mounds ; Origins ; OSIRIS‐REx ; Physical characteristics ; Physical properties ; Piles ; Regolith ; Return to Earth space flight ; Sciences of the Universe ; Security ; small body ; Spacecraft ; Substrates ; Target strength</subject><ispartof>Geophysical research letters, 2020-12, Vol.47 (24), p.n/a</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4675-3a01c892ebf0b8f6e3376a2b549d29cd66c2630b4dc79cb31d075ddaff912d623</citedby><cites>FETCH-LOGICAL-a4675-3a01c892ebf0b8f6e3376a2b549d29cd66c2630b4dc79cb31d075ddaff912d623</cites><orcidid>0000-0002-3733-2530 ; 0000-0002-3578-7750 ; 0000-0002-1363-792X ; 0000-0002-1320-2985 ; 0000-0001-6084-0149 ; 0000-0002-2597-5950 ; 0000-0002-2293-7879 ; 0000-0002-0906-1761 ; 0000-0002-2924-7555 ; 0000-0003-1766-6127 ; 0000-0002-9434-7886 ; 0000-0002-0884-1993 ; 0000-0002-2830-1708 ; 0000-0002-2163-7276 ; 0000-0001-8316-0680 ; 0000-0002-2341-8819 ; 0000-0001-5890-9821 ; 0000-0001-6755-8736 ; 0000-0003-1600-6856 ; 0000-0002-5091-827X ; 0000-0002-9753-7650 ; 0000-0002-8485-8172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL089672$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL089672$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03085217$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, R. T.</creatorcontrib><creatorcontrib>Bierhaus, E. B.</creatorcontrib><creatorcontrib>Barnouin, O. S.</creatorcontrib><creatorcontrib>Daly, M. G.</creatorcontrib><creatorcontrib>Seabrook, J. A.</creatorcontrib><creatorcontrib>Roberts, J. H.</creatorcontrib><creatorcontrib>Ernst, C. M.</creatorcontrib><creatorcontrib>Perry, M. E.</creatorcontrib><creatorcontrib>Nair, H.</creatorcontrib><creatorcontrib>Espiritu, R. C.</creatorcontrib><creatorcontrib>Palmer, E. E.</creatorcontrib><creatorcontrib>Gaskell, R. W.</creatorcontrib><creatorcontrib>Weirich, J. R.</creatorcontrib><creatorcontrib>Susorney, H. C. M.</creatorcontrib><creatorcontrib>Johnson, C. L.</creatorcontrib><creatorcontrib>Walsh, K. J.</creatorcontrib><creatorcontrib>Nolan, M. C.</creatorcontrib><creatorcontrib>Jawin, E. R.</creatorcontrib><creatorcontrib>Michel, P.</creatorcontrib><creatorcontrib>Trang, D.</creatorcontrib><creatorcontrib>Lauretta, D. S.</creatorcontrib><title>The Morphometry of Impact Craters on Bennu</title><title>Geophysical research letters</title><description>Bennu is an ~500‐m‐diameter rubble‐pile asteroid that is the target of detailed study by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission. Here we use data from the OSIRIS‐REx Laser Altimeter to assess depth‐to‐diameter ratios (d/D) of 108 impact craters larger than 10 m in diameter. The d/D of craters on Bennu ranges from 0.02 to 0.19. The mean is 0.10 ± 0.03. The smallest craters show the broadest range in d/D, consistent with d/D measurements on other asteroids. A few craters have central mounds, which is interpreted as evidence that a more competent substrate lies a few meters beneath them. The range of d/D narrows as crater size increases, with craters larger than 80 m tending toward smaller d/D. At large scales, increases in target strength with depth, combined with target curvature, may affect crater morphometry. Plain Language Summary Between 2018 and 2020, National Aeronautics and Space Administration (NASA)'s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) spacecraft orbited a small asteroid called Bennu in preparation to collect a sample for return to Earth. Bennu is a “rubble‐pile” asteroid, meaning an aggregate of rock fragments that have coalesced together in space. OSIRIS‐REx observations showed that Bennu has many craters on its surface, which formed when other, smaller objects collided with it in the past. Crater depths and widths (diameters), in addition to relating to the size and speed of the impacting object, also reflect the physical characteristics of the impacted surface. Accordingly, we measured the depths and diameters of many of Bennu's craters to better understand the surface and interior properties of this rubble‐pile asteroid and how it compares to other asteroids. The smaller craters on Bennu have a variety of depths, even among similarly sized craters. The largest are so wide that they appear to be affected by the curvature of Bennu's surface and by the presence of stronger material at depth. We observe mounds inside some of the smaller craters, supporting the idea that a more competent substrate underlies the surface material. Key Points The depth‐to‐diameter ratio (d/D) of asteroid Bennu's craters &gt;10 m in diameter ranges from 0.02 to 0.19 with a mean of 0.10 ± 0.03 Small craters show the greatest diversity in d/D, whereas larger craters (&gt;80 m) span a narrower range in d/D and tend to be shallower For craters &gt;80 m, increases in target strength with depth, combined with target curvature, likely contribute to smaller d/D</description><subject>Aeronautics</subject><subject>Altimeters</subject><subject>Apollo asteroids</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Bennu</subject><subject>crater morphometry</subject><subject>Craters</subject><subject>Curvature</subject><subject>Depth</subject><subject>depth‐diameter ratio</subject><subject>Diameters</subject><subject>Earth and Planetary Astrophysics</subject><subject>Identification</subject><subject>impact crater</subject><subject>Laser altimeters</subject><subject>Lasers</subject><subject>Measuring instruments</subject><subject>Morphometry</subject><subject>Mounds</subject><subject>Origins</subject><subject>OSIRIS‐REx</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Piles</subject><subject>Regolith</subject><subject>Return to Earth space flight</subject><subject>Sciences of the Universe</subject><subject>Security</subject><subject>small body</subject><subject>Spacecraft</subject><subject>Substrates</subject><subject>Target strength</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz8g4EkxOjv7lT3Woq0QEaSel81mQ1vabNykSv-9KRHx5GmG4eFleAm5pHBHAfU9AsIsh0xLhUdkRDXnaQagjskIQPc7KnlKztp2DQAMGB2Rm8XSJy8hNsuw9V3cJ6FKnreNdV0yjbbzsU1CnTz4ut6dk5PKblp_8TPH5P3pcTGdp_nr7Hk6yVPLpRIps0BdptEXFRRZJT1jSlosBNclaldK6VAyKHjplHYFoyUoUZa2qjTFUiIbk-shd2k3pomrrY17E-zKzCe5Odz61zOBVH3S3l4NtonhY-fbzqzDLtb9ewa5Yii4EtCr20G5GNo2-uo3loI5NGf-NtdzHPjXauP3_1oze8slFVqwb9Vqa74</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Daly, R. T.</creator><creator>Bierhaus, E. B.</creator><creator>Barnouin, O. S.</creator><creator>Daly, M. G.</creator><creator>Seabrook, J. A.</creator><creator>Roberts, J. H.</creator><creator>Ernst, C. M.</creator><creator>Perry, M. E.</creator><creator>Nair, H.</creator><creator>Espiritu, R. C.</creator><creator>Palmer, E. E.</creator><creator>Gaskell, R. W.</creator><creator>Weirich, J. R.</creator><creator>Susorney, H. C. M.</creator><creator>Johnson, C. L.</creator><creator>Walsh, K. J.</creator><creator>Nolan, M. C.</creator><creator>Jawin, E. R.</creator><creator>Michel, P.</creator><creator>Trang, D.</creator><creator>Lauretta, D. S.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3733-2530</orcidid><orcidid>https://orcid.org/0000-0002-3578-7750</orcidid><orcidid>https://orcid.org/0000-0002-1363-792X</orcidid><orcidid>https://orcid.org/0000-0002-1320-2985</orcidid><orcidid>https://orcid.org/0000-0001-6084-0149</orcidid><orcidid>https://orcid.org/0000-0002-2597-5950</orcidid><orcidid>https://orcid.org/0000-0002-2293-7879</orcidid><orcidid>https://orcid.org/0000-0002-0906-1761</orcidid><orcidid>https://orcid.org/0000-0002-2924-7555</orcidid><orcidid>https://orcid.org/0000-0003-1766-6127</orcidid><orcidid>https://orcid.org/0000-0002-9434-7886</orcidid><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid><orcidid>https://orcid.org/0000-0002-2830-1708</orcidid><orcidid>https://orcid.org/0000-0002-2163-7276</orcidid><orcidid>https://orcid.org/0000-0001-8316-0680</orcidid><orcidid>https://orcid.org/0000-0002-2341-8819</orcidid><orcidid>https://orcid.org/0000-0001-5890-9821</orcidid><orcidid>https://orcid.org/0000-0001-6755-8736</orcidid><orcidid>https://orcid.org/0000-0003-1600-6856</orcidid><orcidid>https://orcid.org/0000-0002-5091-827X</orcidid><orcidid>https://orcid.org/0000-0002-9753-7650</orcidid><orcidid>https://orcid.org/0000-0002-8485-8172</orcidid></search><sort><creationdate>20201228</creationdate><title>The Morphometry of Impact Craters on Bennu</title><author>Daly, R. T. ; Bierhaus, E. B. ; Barnouin, O. S. ; Daly, M. G. ; Seabrook, J. A. ; Roberts, J. H. ; Ernst, C. M. ; Perry, M. E. ; Nair, H. ; Espiritu, R. C. ; Palmer, E. E. ; Gaskell, R. W. ; Weirich, J. R. ; Susorney, H. C. M. ; Johnson, C. L. ; Walsh, K. J. ; Nolan, M. C. ; Jawin, E. R. ; Michel, P. ; Trang, D. ; Lauretta, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4675-3a01c892ebf0b8f6e3376a2b549d29cd66c2630b4dc79cb31d075ddaff912d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aeronautics</topic><topic>Altimeters</topic><topic>Apollo asteroids</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Bennu</topic><topic>crater morphometry</topic><topic>Craters</topic><topic>Curvature</topic><topic>Depth</topic><topic>depth‐diameter ratio</topic><topic>Diameters</topic><topic>Earth and Planetary Astrophysics</topic><topic>Identification</topic><topic>impact crater</topic><topic>Laser altimeters</topic><topic>Lasers</topic><topic>Measuring instruments</topic><topic>Morphometry</topic><topic>Mounds</topic><topic>Origins</topic><topic>OSIRIS‐REx</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Piles</topic><topic>Regolith</topic><topic>Return to Earth space flight</topic><topic>Sciences of the Universe</topic><topic>Security</topic><topic>small body</topic><topic>Spacecraft</topic><topic>Substrates</topic><topic>Target strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, R. T.</creatorcontrib><creatorcontrib>Bierhaus, E. B.</creatorcontrib><creatorcontrib>Barnouin, O. S.</creatorcontrib><creatorcontrib>Daly, M. G.</creatorcontrib><creatorcontrib>Seabrook, J. A.</creatorcontrib><creatorcontrib>Roberts, J. H.</creatorcontrib><creatorcontrib>Ernst, C. M.</creatorcontrib><creatorcontrib>Perry, M. E.</creatorcontrib><creatorcontrib>Nair, H.</creatorcontrib><creatorcontrib>Espiritu, R. C.</creatorcontrib><creatorcontrib>Palmer, E. E.</creatorcontrib><creatorcontrib>Gaskell, R. W.</creatorcontrib><creatorcontrib>Weirich, J. R.</creatorcontrib><creatorcontrib>Susorney, H. C. M.</creatorcontrib><creatorcontrib>Johnson, C. L.</creatorcontrib><creatorcontrib>Walsh, K. J.</creatorcontrib><creatorcontrib>Nolan, M. C.</creatorcontrib><creatorcontrib>Jawin, E. R.</creatorcontrib><creatorcontrib>Michel, P.</creatorcontrib><creatorcontrib>Trang, D.</creatorcontrib><creatorcontrib>Lauretta, D. S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, R. T.</au><au>Bierhaus, E. B.</au><au>Barnouin, O. S.</au><au>Daly, M. G.</au><au>Seabrook, J. A.</au><au>Roberts, J. H.</au><au>Ernst, C. M.</au><au>Perry, M. E.</au><au>Nair, H.</au><au>Espiritu, R. C.</au><au>Palmer, E. E.</au><au>Gaskell, R. W.</au><au>Weirich, J. R.</au><au>Susorney, H. C. M.</au><au>Johnson, C. L.</au><au>Walsh, K. J.</au><au>Nolan, M. C.</au><au>Jawin, E. R.</au><au>Michel, P.</au><au>Trang, D.</au><au>Lauretta, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Morphometry of Impact Craters on Bennu</atitle><jtitle>Geophysical research letters</jtitle><date>2020-12-28</date><risdate>2020</risdate><volume>47</volume><issue>24</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Bennu is an ~500‐m‐diameter rubble‐pile asteroid that is the target of detailed study by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission. Here we use data from the OSIRIS‐REx Laser Altimeter to assess depth‐to‐diameter ratios (d/D) of 108 impact craters larger than 10 m in diameter. The d/D of craters on Bennu ranges from 0.02 to 0.19. The mean is 0.10 ± 0.03. The smallest craters show the broadest range in d/D, consistent with d/D measurements on other asteroids. A few craters have central mounds, which is interpreted as evidence that a more competent substrate lies a few meters beneath them. The range of d/D narrows as crater size increases, with craters larger than 80 m tending toward smaller d/D. At large scales, increases in target strength with depth, combined with target curvature, may affect crater morphometry. Plain Language Summary Between 2018 and 2020, National Aeronautics and Space Administration (NASA)'s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) spacecraft orbited a small asteroid called Bennu in preparation to collect a sample for return to Earth. Bennu is a “rubble‐pile” asteroid, meaning an aggregate of rock fragments that have coalesced together in space. OSIRIS‐REx observations showed that Bennu has many craters on its surface, which formed when other, smaller objects collided with it in the past. Crater depths and widths (diameters), in addition to relating to the size and speed of the impacting object, also reflect the physical characteristics of the impacted surface. Accordingly, we measured the depths and diameters of many of Bennu's craters to better understand the surface and interior properties of this rubble‐pile asteroid and how it compares to other asteroids. The smaller craters on Bennu have a variety of depths, even among similarly sized craters. The largest are so wide that they appear to be affected by the curvature of Bennu's surface and by the presence of stronger material at depth. We observe mounds inside some of the smaller craters, supporting the idea that a more competent substrate underlies the surface material. Key Points The depth‐to‐diameter ratio (d/D) of asteroid Bennu's craters &gt;10 m in diameter ranges from 0.02 to 0.19 with a mean of 0.10 ± 0.03 Small craters show the greatest diversity in d/D, whereas larger craters (&gt;80 m) span a narrower range in d/D and tend to be shallower For craters &gt;80 m, increases in target strength with depth, combined with target curvature, likely contribute to smaller d/D</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020GL089672</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3733-2530</orcidid><orcidid>https://orcid.org/0000-0002-3578-7750</orcidid><orcidid>https://orcid.org/0000-0002-1363-792X</orcidid><orcidid>https://orcid.org/0000-0002-1320-2985</orcidid><orcidid>https://orcid.org/0000-0001-6084-0149</orcidid><orcidid>https://orcid.org/0000-0002-2597-5950</orcidid><orcidid>https://orcid.org/0000-0002-2293-7879</orcidid><orcidid>https://orcid.org/0000-0002-0906-1761</orcidid><orcidid>https://orcid.org/0000-0002-2924-7555</orcidid><orcidid>https://orcid.org/0000-0003-1766-6127</orcidid><orcidid>https://orcid.org/0000-0002-9434-7886</orcidid><orcidid>https://orcid.org/0000-0002-0884-1993</orcidid><orcidid>https://orcid.org/0000-0002-2830-1708</orcidid><orcidid>https://orcid.org/0000-0002-2163-7276</orcidid><orcidid>https://orcid.org/0000-0001-8316-0680</orcidid><orcidid>https://orcid.org/0000-0002-2341-8819</orcidid><orcidid>https://orcid.org/0000-0001-5890-9821</orcidid><orcidid>https://orcid.org/0000-0001-6755-8736</orcidid><orcidid>https://orcid.org/0000-0003-1600-6856</orcidid><orcidid>https://orcid.org/0000-0002-5091-827X</orcidid><orcidid>https://orcid.org/0000-0002-9753-7650</orcidid><orcidid>https://orcid.org/0000-0002-8485-8172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-12, Vol.47 (24), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_hal_03085217v1
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Aeronautics
Altimeters
Apollo asteroids
Asteroids
Astrophysics
Bennu
crater morphometry
Craters
Curvature
Depth
depth‐diameter ratio
Diameters
Earth and Planetary Astrophysics
Identification
impact crater
Laser altimeters
Lasers
Measuring instruments
Morphometry
Mounds
Origins
OSIRIS‐REx
Physical characteristics
Physical properties
Piles
Regolith
Return to Earth space flight
Sciences of the Universe
Security
small body
Spacecraft
Substrates
Target strength
title The Morphometry of Impact Craters on Bennu
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Morphometry%20of%20Impact%20Craters%20on%20Bennu&rft.jtitle=Geophysical%20research%20letters&rft.au=Daly,%20R.%20T.&rft.date=2020-12-28&rft.volume=47&rft.issue=24&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL089672&rft_dat=%3Cproquest_hal_p%3E2473254750%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473254750&rft_id=info:pmid/&rfr_iscdi=true