Dynamics of water confined in mesopores with variable surface interaction

We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-03, Vol.154 (9), p.094505-094505
Hauptverfasser: Jani, Aîcha, Busch, Mark, Mietner, J. Benedikt, Ollivier, Jacques, Appel, Markus, Frick, Bernhard, Zanotti, Jean-Marc, Ghoufi, Aziz, Huber, Patrick, Fröba, Michael, Morineau, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094505
container_issue 9
container_start_page 094505
container_title The Journal of chemical physics
container_volume 154
creator Jani, Aîcha
Busch, Mark
Mietner, J. Benedikt
Ollivier, Jacques
Appel, Markus
Frick, Bernhard
Zanotti, Jean-Marc
Ghoufi, Aziz
Huber, Patrick
Fröba, Michael
Morineau, Denis
description We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm–4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.
doi_str_mv 10.1063/5.0040705
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03084464v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495608374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-cc3c4c3f75dcc5810cf6c271655e747cc3abc798da1ce58c6c625e857a3e00d83</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBRWrqbtIf-gWDopQ04HVmfPi5p8wELvSRnoR3LRIttOZK9If8-NrvdQAM5CaRH70gzhHyjcEFBsl_iAoCDAvGBLCnoMleyhI9kCVDQvJQgF-QkpS0AUFXwz2TBmNSCcrkkt7-fO9t6TFmosyc7uJhh6GrfuSrzXda6FPoQXcqe_PCQ7Wz0dtO4LI2xtugmMt2wOPjQfSGfatsk9_WwnpL7qz93lzf5-u_17eVqnSMXxZAjMuTIaiUqRKEpYC2xUFQK4RRX07HdoCp1ZSk6oVGiLITTQlnmACrNTsnPfe6DbUwffWvjswnWm5vV2sx7wEBzLvmumOyPve1jeBxdGkzrE7qmsZ0LYzIFL0umhdAz_f4f3YYxdtNPZiUkaKb4a3GMIaXo6uMLKJh5FkaYwywme3ZIHDetq47yX_MncL4HCf1g5x4ezS7E1yTTV_V7-G3pFyGvniE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495608374</pqid></control><display><type>article</type><title>Dynamics of water confined in mesopores with variable surface interaction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jani, Aîcha ; Busch, Mark ; Mietner, J. Benedikt ; Ollivier, Jacques ; Appel, Markus ; Frick, Bernhard ; Zanotti, Jean-Marc ; Ghoufi, Aziz ; Huber, Patrick ; Fröba, Michael ; Morineau, Denis</creator><creatorcontrib>Jani, Aîcha ; Busch, Mark ; Mietner, J. Benedikt ; Ollivier, Jacques ; Appel, Markus ; Frick, Bernhard ; Zanotti, Jean-Marc ; Ghoufi, Aziz ; Huber, Patrick ; Fröba, Michael ; Morineau, Denis</creatorcontrib><description>We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm–4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0040705</identifier><identifier>PMID: 33685146</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Backscattering ; Chemical Physics ; Chemical Sciences ; Comparative studies ; Diffusion coefficient ; Material chemistry ; Molecular dynamics ; Neutron scattering ; Neutron spectrometers ; Physics ; Pore size ; Porosity ; Relaxation time ; Self diffusion ; Silicon dioxide ; Temperature dependence ; Translational motion ; Water</subject><ispartof>The Journal of chemical physics, 2021-03, Vol.154 (9), p.094505-094505</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-cc3c4c3f75dcc5810cf6c271655e747cc3abc798da1ce58c6c625e857a3e00d83</citedby><cites>FETCH-LOGICAL-c452t-cc3c4c3f75dcc5810cf6c271655e747cc3abc798da1ce58c6c625e857a3e00d83</cites><orcidid>0000-0003-0877-7968 ; 0000-0002-2126-9100 ; 0000-0001-8570-4549 ; 0000-0001-6474-3944 ; 0000-0001-5954-1774 ; 0000-0002-9064-4314 ; 0000-0002-3378-6674 ; 0000-0001-6927-0509 ; 0000-0001-6069-7573 ; 0000-0003-2806-8130 ; 0000-0002-8784-3021 ; 0000000160697573 ; 0000000287843021 ; 0000000233786674 ; 0000000221269100 ; 0000000328068130 ; 0000000169270509 ; 0000000308777968 ; 0000000290644314 ; 0000000159541774 ; 0000000185704549 ; 0000000164743944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0040705$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33685146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03084464$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jani, Aîcha</creatorcontrib><creatorcontrib>Busch, Mark</creatorcontrib><creatorcontrib>Mietner, J. Benedikt</creatorcontrib><creatorcontrib>Ollivier, Jacques</creatorcontrib><creatorcontrib>Appel, Markus</creatorcontrib><creatorcontrib>Frick, Bernhard</creatorcontrib><creatorcontrib>Zanotti, Jean-Marc</creatorcontrib><creatorcontrib>Ghoufi, Aziz</creatorcontrib><creatorcontrib>Huber, Patrick</creatorcontrib><creatorcontrib>Fröba, Michael</creatorcontrib><creatorcontrib>Morineau, Denis</creatorcontrib><title>Dynamics of water confined in mesopores with variable surface interaction</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm–4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.</description><subject>Backscattering</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Comparative studies</subject><subject>Diffusion coefficient</subject><subject>Material chemistry</subject><subject>Molecular dynamics</subject><subject>Neutron scattering</subject><subject>Neutron spectrometers</subject><subject>Physics</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Relaxation time</subject><subject>Self diffusion</subject><subject>Silicon dioxide</subject><subject>Temperature dependence</subject><subject>Translational motion</subject><subject>Water</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90U1r3DAQBmBRWrqbtIf-gWDopQ04HVmfPi5p8wELvSRnoR3LRIttOZK9If8-NrvdQAM5CaRH70gzhHyjcEFBsl_iAoCDAvGBLCnoMleyhI9kCVDQvJQgF-QkpS0AUFXwz2TBmNSCcrkkt7-fO9t6TFmosyc7uJhh6GrfuSrzXda6FPoQXcqe_PCQ7Wz0dtO4LI2xtugmMt2wOPjQfSGfatsk9_WwnpL7qz93lzf5-u_17eVqnSMXxZAjMuTIaiUqRKEpYC2xUFQK4RRX07HdoCp1ZSk6oVGiLITTQlnmACrNTsnPfe6DbUwffWvjswnWm5vV2sx7wEBzLvmumOyPve1jeBxdGkzrE7qmsZ0LYzIFL0umhdAz_f4f3YYxdtNPZiUkaKb4a3GMIaXo6uMLKJh5FkaYwywme3ZIHDetq47yX_MncL4HCf1g5x4ezS7E1yTTV_V7-G3pFyGvniE</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>Jani, Aîcha</creator><creator>Busch, Mark</creator><creator>Mietner, J. Benedikt</creator><creator>Ollivier, Jacques</creator><creator>Appel, Markus</creator><creator>Frick, Bernhard</creator><creator>Zanotti, Jean-Marc</creator><creator>Ghoufi, Aziz</creator><creator>Huber, Patrick</creator><creator>Fröba, Michael</creator><creator>Morineau, Denis</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0877-7968</orcidid><orcidid>https://orcid.org/0000-0002-2126-9100</orcidid><orcidid>https://orcid.org/0000-0001-8570-4549</orcidid><orcidid>https://orcid.org/0000-0001-6474-3944</orcidid><orcidid>https://orcid.org/0000-0001-5954-1774</orcidid><orcidid>https://orcid.org/0000-0002-9064-4314</orcidid><orcidid>https://orcid.org/0000-0002-3378-6674</orcidid><orcidid>https://orcid.org/0000-0001-6927-0509</orcidid><orcidid>https://orcid.org/0000-0001-6069-7573</orcidid><orcidid>https://orcid.org/0000-0003-2806-8130</orcidid><orcidid>https://orcid.org/0000-0002-8784-3021</orcidid><orcidid>https://orcid.org/0000000160697573</orcidid><orcidid>https://orcid.org/0000000287843021</orcidid><orcidid>https://orcid.org/0000000233786674</orcidid><orcidid>https://orcid.org/0000000221269100</orcidid><orcidid>https://orcid.org/0000000328068130</orcidid><orcidid>https://orcid.org/0000000169270509</orcidid><orcidid>https://orcid.org/0000000308777968</orcidid><orcidid>https://orcid.org/0000000290644314</orcidid><orcidid>https://orcid.org/0000000159541774</orcidid><orcidid>https://orcid.org/0000000185704549</orcidid><orcidid>https://orcid.org/0000000164743944</orcidid></search><sort><creationdate>20210307</creationdate><title>Dynamics of water confined in mesopores with variable surface interaction</title><author>Jani, Aîcha ; Busch, Mark ; Mietner, J. Benedikt ; Ollivier, Jacques ; Appel, Markus ; Frick, Bernhard ; Zanotti, Jean-Marc ; Ghoufi, Aziz ; Huber, Patrick ; Fröba, Michael ; Morineau, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-cc3c4c3f75dcc5810cf6c271655e747cc3abc798da1ce58c6c625e857a3e00d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Backscattering</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Comparative studies</topic><topic>Diffusion coefficient</topic><topic>Material chemistry</topic><topic>Molecular dynamics</topic><topic>Neutron scattering</topic><topic>Neutron spectrometers</topic><topic>Physics</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Relaxation time</topic><topic>Self diffusion</topic><topic>Silicon dioxide</topic><topic>Temperature dependence</topic><topic>Translational motion</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jani, Aîcha</creatorcontrib><creatorcontrib>Busch, Mark</creatorcontrib><creatorcontrib>Mietner, J. Benedikt</creatorcontrib><creatorcontrib>Ollivier, Jacques</creatorcontrib><creatorcontrib>Appel, Markus</creatorcontrib><creatorcontrib>Frick, Bernhard</creatorcontrib><creatorcontrib>Zanotti, Jean-Marc</creatorcontrib><creatorcontrib>Ghoufi, Aziz</creatorcontrib><creatorcontrib>Huber, Patrick</creatorcontrib><creatorcontrib>Fröba, Michael</creatorcontrib><creatorcontrib>Morineau, Denis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jani, Aîcha</au><au>Busch, Mark</au><au>Mietner, J. Benedikt</au><au>Ollivier, Jacques</au><au>Appel, Markus</au><au>Frick, Bernhard</au><au>Zanotti, Jean-Marc</au><au>Ghoufi, Aziz</au><au>Huber, Patrick</au><au>Fröba, Michael</au><au>Morineau, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of water confined in mesopores with variable surface interaction</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-03-07</date><risdate>2021</risdate><volume>154</volume><issue>9</issue><spage>094505</spage><epage>094505</epage><pages>094505-094505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm–4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33685146</pmid><doi>10.1063/5.0040705</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0877-7968</orcidid><orcidid>https://orcid.org/0000-0002-2126-9100</orcidid><orcidid>https://orcid.org/0000-0001-8570-4549</orcidid><orcidid>https://orcid.org/0000-0001-6474-3944</orcidid><orcidid>https://orcid.org/0000-0001-5954-1774</orcidid><orcidid>https://orcid.org/0000-0002-9064-4314</orcidid><orcidid>https://orcid.org/0000-0002-3378-6674</orcidid><orcidid>https://orcid.org/0000-0001-6927-0509</orcidid><orcidid>https://orcid.org/0000-0001-6069-7573</orcidid><orcidid>https://orcid.org/0000-0003-2806-8130</orcidid><orcidid>https://orcid.org/0000-0002-8784-3021</orcidid><orcidid>https://orcid.org/0000000160697573</orcidid><orcidid>https://orcid.org/0000000287843021</orcidid><orcidid>https://orcid.org/0000000233786674</orcidid><orcidid>https://orcid.org/0000000221269100</orcidid><orcidid>https://orcid.org/0000000328068130</orcidid><orcidid>https://orcid.org/0000000169270509</orcidid><orcidid>https://orcid.org/0000000308777968</orcidid><orcidid>https://orcid.org/0000000290644314</orcidid><orcidid>https://orcid.org/0000000159541774</orcidid><orcidid>https://orcid.org/0000000185704549</orcidid><orcidid>https://orcid.org/0000000164743944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-03, Vol.154 (9), p.094505-094505
issn 0021-9606
1089-7690
language eng
recordid cdi_hal_primary_oai_HAL_hal_03084464v2
source AIP Journals Complete; Alma/SFX Local Collection
subjects Backscattering
Chemical Physics
Chemical Sciences
Comparative studies
Diffusion coefficient
Material chemistry
Molecular dynamics
Neutron scattering
Neutron spectrometers
Physics
Pore size
Porosity
Relaxation time
Self diffusion
Silicon dioxide
Temperature dependence
Translational motion
Water
title Dynamics of water confined in mesopores with variable surface interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20water%20confined%20in%20mesopores%20with%20variable%20surface%20interaction&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jani,%20A%C3%AEcha&rft.date=2021-03-07&rft.volume=154&rft.issue=9&rft.spage=094505&rft.epage=094505&rft.pages=094505-094505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0040705&rft_dat=%3Cproquest_hal_p%3E2495608374%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495608374&rft_id=info:pmid/33685146&rfr_iscdi=true