Microbial functional signature in the atmospheric boundary layer

Microorganisms are ubiquitous in the atmosphere, and some airborne microbial cells were shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., ultraviolet – UV – radiation, desiccation and the presence of radicals). In addition to surviving, some cultivable microor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2020-12, Vol.17 (23), p.6081-6095
Hauptverfasser: Tignat-Perrier, Romie, Dommergue, Aurélien, Thollot, Alban, Magand, Olivier, Vogel, Timothy M, Larose, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6095
container_issue 23
container_start_page 6081
container_title Biogeosciences
container_volume 17
creator Tignat-Perrier, Romie
Dommergue, Aurélien
Thollot, Alban
Magand, Olivier
Vogel, Timothy M
Larose, Catherine
description Microorganisms are ubiquitous in the atmosphere, and some airborne microbial cells were shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., ultraviolet – UV – radiation, desiccation and the presence of radicals). In addition to surviving, some cultivable microorganisms of airborne origin were shown to be able to grow on atmospheric chemicals in laboratory experiments. Metagenomic investigations have been used to identify specific signatures of microbial functional potential in different ecosystems. We conducted a comparative metagenomic study on the overall microbial functional potential and specific metabolic and stress-related microbial functions of atmospheric microorganisms in order to determine whether airborne microbial communities possess an atmosphere-specific functional potential signature as compared to other ecosystems (i.e., soil, sediment, snow, feces, surface seawater etc.). In the absence of a specific atmospheric signature, the atmospheric samples collected at nine sites around the world were similar to their underlying ecosystems. In addition, atmospheric samples were characterized by a relatively high proportion of fungi. The higher proportion of sequences annotated as genes involved in stress-related functions (i.e., functions related to the response to desiccation, UV radiation, oxidative stress etc.) resulted in part from the high concentrations of fungi that might resist and survive atmospheric physical stress better than bacteria.
doi_str_mv 10.5194/bg-17-6081-2020
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03079607v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643798423</galeid><sourcerecordid>A643798423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-375ca2169c7e96c7d571627e2d0816c16358973f1ac0677eaa8d71fd176a16ea3</originalsourceid><addsrcrecordid>eNptkctLxDAQxoso-Dx7LXjyUM2jzbQ3l8UXrAg-zmE2TbuRbrMmqbj_vSkrsgsyhxmG3zd8w5ck55RcFbTKr-dtRiETpKQZI4zsJUcUmMhyWlb7W_Nhcuz9ByG8JGVxlNw8GeXs3GCXNkOvgrF9HL1pewyD06np07DQKYal9auFdkalczv0Nbp12uFau9PkoMHO67PffpK8392-TR-y2fP943Qyy1SeFyHjUChkVFQKdCUU1AVQwUCzOhoWigpelBXwhqIiAkAjljXQpqYgkAqN_CS53NxdYCdXziyjA2nRyIfJTI47wglUgsAXjezFhl05-zloH-SHHVx8zEuWCwFFzsQW1WKnpekbGxyqpfFKTkTOoSpzxiN19Q8Vq9ZLo2yvGxP3O4LLHUFkgv4OLQ7ey8fXl132esPGDLx3uvn7jBI5pirnraQgx1TlmCr_AVyMkPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466754261</pqid></control><display><type>article</type><title>Microbial functional signature in the atmospheric boundary layer</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tignat-Perrier, Romie ; Dommergue, Aurélien ; Thollot, Alban ; Magand, Olivier ; Vogel, Timothy M ; Larose, Catherine</creator><creatorcontrib>Tignat-Perrier, Romie ; Dommergue, Aurélien ; Thollot, Alban ; Magand, Olivier ; Vogel, Timothy M ; Larose, Catherine</creatorcontrib><description>Microorganisms are ubiquitous in the atmosphere, and some airborne microbial cells were shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., ultraviolet – UV – radiation, desiccation and the presence of radicals). In addition to surviving, some cultivable microorganisms of airborne origin were shown to be able to grow on atmospheric chemicals in laboratory experiments. Metagenomic investigations have been used to identify specific signatures of microbial functional potential in different ecosystems. We conducted a comparative metagenomic study on the overall microbial functional potential and specific metabolic and stress-related microbial functions of atmospheric microorganisms in order to determine whether airborne microbial communities possess an atmosphere-specific functional potential signature as compared to other ecosystems (i.e., soil, sediment, snow, feces, surface seawater etc.). In the absence of a specific atmospheric signature, the atmospheric samples collected at nine sites around the world were similar to their underlying ecosystems. In addition, atmospheric samples were characterized by a relatively high proportion of fungi. The higher proportion of sequences annotated as genes involved in stress-related functions (i.e., functions related to the response to desiccation, UV radiation, oxidative stress etc.) resulted in part from the high concentrations of fungi that might resist and survive atmospheric physical stress better than bacteria.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-17-6081-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Adaptation ; Airborne microorganisms ; Atmosphere ; Atmospheric boundary layer ; Boundary layers ; Chemical analysis ; Comparative analysis ; Deoxyribonucleic acid ; Desiccation ; DNA ; Ecosystems ; Environmental Sciences ; Functionals ; Fungi ; Genes ; Laboratory experiments ; Life Sciences ; Marine ecosystems ; Metabolism ; Metagenomics ; Microbial activity ; Microbial drug resistance ; Microorganisms ; Oxidative stress ; Physical stress ; Planetary boundary layer ; Quality standards ; Radiation ; Sea level ; Seawater ; Soil ; Survival ; Ultraviolet radiation ; Water analysis</subject><ispartof>Biogeosciences, 2020-12, Vol.17 (23), p.6081-6095</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-375ca2169c7e96c7d571627e2d0816c16358973f1ac0677eaa8d71fd176a16ea3</citedby><cites>FETCH-LOGICAL-c445t-375ca2169c7e96c7d571627e2d0816c16358973f1ac0677eaa8d71fd176a16ea3</cites><orcidid>0000-0002-5445-4652 ; 0000-0002-8185-9604 ; 0000-0001-8711-4155 ; 0000-0001-5641-0701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03079607$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tignat-Perrier, Romie</creatorcontrib><creatorcontrib>Dommergue, Aurélien</creatorcontrib><creatorcontrib>Thollot, Alban</creatorcontrib><creatorcontrib>Magand, Olivier</creatorcontrib><creatorcontrib>Vogel, Timothy M</creatorcontrib><creatorcontrib>Larose, Catherine</creatorcontrib><title>Microbial functional signature in the atmospheric boundary layer</title><title>Biogeosciences</title><description>Microorganisms are ubiquitous in the atmosphere, and some airborne microbial cells were shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., ultraviolet – UV – radiation, desiccation and the presence of radicals). In addition to surviving, some cultivable microorganisms of airborne origin were shown to be able to grow on atmospheric chemicals in laboratory experiments. Metagenomic investigations have been used to identify specific signatures of microbial functional potential in different ecosystems. We conducted a comparative metagenomic study on the overall microbial functional potential and specific metabolic and stress-related microbial functions of atmospheric microorganisms in order to determine whether airborne microbial communities possess an atmosphere-specific functional potential signature as compared to other ecosystems (i.e., soil, sediment, snow, feces, surface seawater etc.). In the absence of a specific atmospheric signature, the atmospheric samples collected at nine sites around the world were similar to their underlying ecosystems. In addition, atmospheric samples were characterized by a relatively high proportion of fungi. The higher proportion of sequences annotated as genes involved in stress-related functions (i.e., functions related to the response to desiccation, UV radiation, oxidative stress etc.) resulted in part from the high concentrations of fungi that might resist and survive atmospheric physical stress better than bacteria.</description><subject>Adaptation</subject><subject>Airborne microorganisms</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Boundary layers</subject><subject>Chemical analysis</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>Desiccation</subject><subject>DNA</subject><subject>Ecosystems</subject><subject>Environmental Sciences</subject><subject>Functionals</subject><subject>Fungi</subject><subject>Genes</subject><subject>Laboratory experiments</subject><subject>Life Sciences</subject><subject>Marine ecosystems</subject><subject>Metabolism</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbial drug resistance</subject><subject>Microorganisms</subject><subject>Oxidative stress</subject><subject>Physical stress</subject><subject>Planetary boundary layer</subject><subject>Quality standards</subject><subject>Radiation</subject><subject>Sea level</subject><subject>Seawater</subject><subject>Soil</subject><subject>Survival</subject><subject>Ultraviolet radiation</subject><subject>Water analysis</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkctLxDAQxoso-Dx7LXjyUM2jzbQ3l8UXrAg-zmE2TbuRbrMmqbj_vSkrsgsyhxmG3zd8w5ck55RcFbTKr-dtRiETpKQZI4zsJUcUmMhyWlb7W_Nhcuz9ByG8JGVxlNw8GeXs3GCXNkOvgrF9HL1pewyD06np07DQKYal9auFdkalczv0Nbp12uFau9PkoMHO67PffpK8392-TR-y2fP943Qyy1SeFyHjUChkVFQKdCUU1AVQwUCzOhoWigpelBXwhqIiAkAjljXQpqYgkAqN_CS53NxdYCdXziyjA2nRyIfJTI47wglUgsAXjezFhl05-zloH-SHHVx8zEuWCwFFzsQW1WKnpekbGxyqpfFKTkTOoSpzxiN19Q8Vq9ZLo2yvGxP3O4LLHUFkgv4OLQ7ey8fXl132esPGDLx3uvn7jBI5pirnraQgx1TlmCr_AVyMkPo</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Tignat-Perrier, Romie</creator><creator>Dommergue, Aurélien</creator><creator>Thollot, Alban</creator><creator>Magand, Olivier</creator><creator>Vogel, Timothy M</creator><creator>Larose, Catherine</creator><general>Copernicus GmbH</general><general>European Geosciences Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5445-4652</orcidid><orcidid>https://orcid.org/0000-0002-8185-9604</orcidid><orcidid>https://orcid.org/0000-0001-8711-4155</orcidid><orcidid>https://orcid.org/0000-0001-5641-0701</orcidid></search><sort><creationdate>20201204</creationdate><title>Microbial functional signature in the atmospheric boundary layer</title><author>Tignat-Perrier, Romie ; Dommergue, Aurélien ; Thollot, Alban ; Magand, Olivier ; Vogel, Timothy M ; Larose, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-375ca2169c7e96c7d571627e2d0816c16358973f1ac0677eaa8d71fd176a16ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Airborne microorganisms</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Boundary layers</topic><topic>Chemical analysis</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>Desiccation</topic><topic>DNA</topic><topic>Ecosystems</topic><topic>Environmental Sciences</topic><topic>Functionals</topic><topic>Fungi</topic><topic>Genes</topic><topic>Laboratory experiments</topic><topic>Life Sciences</topic><topic>Marine ecosystems</topic><topic>Metabolism</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbial drug resistance</topic><topic>Microorganisms</topic><topic>Oxidative stress</topic><topic>Physical stress</topic><topic>Planetary boundary layer</topic><topic>Quality standards</topic><topic>Radiation</topic><topic>Sea level</topic><topic>Seawater</topic><topic>Soil</topic><topic>Survival</topic><topic>Ultraviolet radiation</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tignat-Perrier, Romie</creatorcontrib><creatorcontrib>Dommergue, Aurélien</creatorcontrib><creatorcontrib>Thollot, Alban</creatorcontrib><creatorcontrib>Magand, Olivier</creatorcontrib><creatorcontrib>Vogel, Timothy M</creatorcontrib><creatorcontrib>Larose, Catherine</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tignat-Perrier, Romie</au><au>Dommergue, Aurélien</au><au>Thollot, Alban</au><au>Magand, Olivier</au><au>Vogel, Timothy M</au><au>Larose, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial functional signature in the atmospheric boundary layer</atitle><jtitle>Biogeosciences</jtitle><date>2020-12-04</date><risdate>2020</risdate><volume>17</volume><issue>23</issue><spage>6081</spage><epage>6095</epage><pages>6081-6095</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Microorganisms are ubiquitous in the atmosphere, and some airborne microbial cells were shown to be particularly resistant to atmospheric physical and chemical conditions (e.g., ultraviolet – UV – radiation, desiccation and the presence of radicals). In addition to surviving, some cultivable microorganisms of airborne origin were shown to be able to grow on atmospheric chemicals in laboratory experiments. Metagenomic investigations have been used to identify specific signatures of microbial functional potential in different ecosystems. We conducted a comparative metagenomic study on the overall microbial functional potential and specific metabolic and stress-related microbial functions of atmospheric microorganisms in order to determine whether airborne microbial communities possess an atmosphere-specific functional potential signature as compared to other ecosystems (i.e., soil, sediment, snow, feces, surface seawater etc.). In the absence of a specific atmospheric signature, the atmospheric samples collected at nine sites around the world were similar to their underlying ecosystems. In addition, atmospheric samples were characterized by a relatively high proportion of fungi. The higher proportion of sequences annotated as genes involved in stress-related functions (i.e., functions related to the response to desiccation, UV radiation, oxidative stress etc.) resulted in part from the high concentrations of fungi that might resist and survive atmospheric physical stress better than bacteria.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-17-6081-2020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5445-4652</orcidid><orcidid>https://orcid.org/0000-0002-8185-9604</orcidid><orcidid>https://orcid.org/0000-0001-8711-4155</orcidid><orcidid>https://orcid.org/0000-0001-5641-0701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2020-12, Vol.17 (23), p.6081-6095
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_hal_primary_oai_HAL_hal_03079607v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation
Airborne microorganisms
Atmosphere
Atmospheric boundary layer
Boundary layers
Chemical analysis
Comparative analysis
Deoxyribonucleic acid
Desiccation
DNA
Ecosystems
Environmental Sciences
Functionals
Fungi
Genes
Laboratory experiments
Life Sciences
Marine ecosystems
Metabolism
Metagenomics
Microbial activity
Microbial drug resistance
Microorganisms
Oxidative stress
Physical stress
Planetary boundary layer
Quality standards
Radiation
Sea level
Seawater
Soil
Survival
Ultraviolet radiation
Water analysis
title Microbial functional signature in the atmospheric boundary layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20functional%20signature%20in%20the%20atmospheric%20boundary%20layer&rft.jtitle=Biogeosciences&rft.au=Tignat-Perrier,%20Romie&rft.date=2020-12-04&rft.volume=17&rft.issue=23&rft.spage=6081&rft.epage=6095&rft.pages=6081-6095&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-17-6081-2020&rft_dat=%3Cgale_hal_p%3EA643798423%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466754261&rft_id=info:pmid/&rft_galeid=A643798423&rfr_iscdi=true