Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen

Rotational excitation of the interstellar HC2NC and HNC3 molecules, two isomers of HC3N, induced by collisions with H2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio four-dimensional (4D) potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS earth and space chemistry 2019-07, Vol.3 (7), p.1151-1157
Hauptverfasser: Bop, Cheikh T, Batista-Romero, Fidel A, Faure, Alexandre, Quintas-Sánchez, Ernesto, Dawes, Richard, Lique, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 7
container_start_page 1151
container_title ACS earth and space chemistry
container_volume 3
creator Bop, Cheikh T
Batista-Romero, Fidel A
Faure, Alexandre
Quintas-Sánchez, Ernesto
Dawes, Richard
Lique, François
description Rotational excitation of the interstellar HC2NC and HNC3 molecules, two isomers of HC3N, induced by collisions with H2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio four-dimensional (4D) potential energy surfaces (PESs) computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD­(T)-F12b] level of theory. The method of interpolating moving least squares (IMLS) was used to construct 4D analytical PESs. Rotationally inelastic cross sections among the low-lying rotational levels of HC2NC and HNC3 were obtained using a pure quantum close-coupling approach for total energies up to ∼100 cm–1. The corresponding thermal rate coefficients were computed for temperatures ranging from 1 to 20 K. Propensity rules in favor of even Δj 1 transitions were found for both HC2NC and HNC3 in collisions with para-H2(j 2 = 0), with j 1 being the rotational level of HC2NC and HNC3 molecules. The new rate coefficients were compared to previously published HC3N–para-H2(j 2 = 0) rate coefficients. As expected, differences were found, especially for the rate coefficients corresponding to Δj 1 = 1 transitions. Such a comparison confirms the importance of having specific collisional data for the different isomers of a molecule. The new rate coefficients will be crucial to improve the estimation of the HC3N/HC2NC/HNC3 abundance ratio in the interstellar medium.
doi_str_mv 10.1021/acsearthspacechem.9b00049
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03078753v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c89286180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-cd9c90d56aa1a4033ce4d1100702476a2d1de3c266f49603029be4fed5a13b413</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsGj_w3r00LpfSbrHEqotVLwoHpfJZmJSkmzZTcX8e7e0iODF084OzzMzvITccTbnTPAHsAHBD3XYg0VbYzfXBWNM6QsyESoTM6kScfmrvibTEHYR4VrKBVtMyPsmuA59Ezq6qiq0Q6BNT4caae7atgmN66Glqy_bDDDED3UVzUfoXdw4jC32SIuRPrsW7aEFT9dj6d0H9rfkqoI24PT83pC3x9Vrvp5tX542-XI7A6nFMLOltpqVSQrAQTEpLaqSc8YyFo9OQZS8RGlFmlZKp0wyoQtUFZYJcFkoLm_I_WluDa3Z-6YDPxoHjVkvt-bYi062yBL5eWT1ibXeheCx-hE4M8dAzZ9AzTnQ6CYnNyJm5w4-xhL-4X0DcfeBrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen</title><source>ACS Publications</source><creator>Bop, Cheikh T ; Batista-Romero, Fidel A ; Faure, Alexandre ; Quintas-Sánchez, Ernesto ; Dawes, Richard ; Lique, François</creator><creatorcontrib>Bop, Cheikh T ; Batista-Romero, Fidel A ; Faure, Alexandre ; Quintas-Sánchez, Ernesto ; Dawes, Richard ; Lique, François</creatorcontrib><description>Rotational excitation of the interstellar HC2NC and HNC3 molecules, two isomers of HC3N, induced by collisions with H2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio four-dimensional (4D) potential energy surfaces (PESs) computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD­(T)-F12b] level of theory. The method of interpolating moving least squares (IMLS) was used to construct 4D analytical PESs. Rotationally inelastic cross sections among the low-lying rotational levels of HC2NC and HNC3 were obtained using a pure quantum close-coupling approach for total energies up to ∼100 cm–1. The corresponding thermal rate coefficients were computed for temperatures ranging from 1 to 20 K. Propensity rules in favor of even Δj 1 transitions were found for both HC2NC and HNC3 in collisions with para-H2(j 2 = 0), with j 1 being the rotational level of HC2NC and HNC3 molecules. The new rate coefficients were compared to previously published HC3N–para-H2(j 2 = 0) rate coefficients. As expected, differences were found, especially for the rate coefficients corresponding to Δj 1 = 1 transitions. Such a comparison confirms the importance of having specific collisional data for the different isomers of a molecule. The new rate coefficients will be crucial to improve the estimation of the HC3N/HC2NC/HNC3 abundance ratio in the interstellar medium.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.9b00049</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Astrophysics ; Chemical Sciences ; or physical chemistry ; Sciences of the Universe ; Theoretical and</subject><ispartof>ACS earth and space chemistry, 2019-07, Vol.3 (7), p.1151-1157</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-cd9c90d56aa1a4033ce4d1100702476a2d1de3c266f49603029be4fed5a13b413</citedby><cites>FETCH-LOGICAL-a392t-cd9c90d56aa1a4033ce4d1100702476a2d1de3c266f49603029be4fed5a13b413</cites><orcidid>0000-0002-4378-8745 ; 0000-0001-7199-2535 ; 0000-0002-2493-4671 ; 0000-0002-0664-2536 ; 0000-0003-2369-1601 ; 0000-0001-7553-4355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.9b00049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsearthspacechem.9b00049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03078753$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bop, Cheikh T</creatorcontrib><creatorcontrib>Batista-Romero, Fidel A</creatorcontrib><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Quintas-Sánchez, Ernesto</creatorcontrib><creatorcontrib>Dawes, Richard</creatorcontrib><creatorcontrib>Lique, François</creatorcontrib><title>Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>Rotational excitation of the interstellar HC2NC and HNC3 molecules, two isomers of HC3N, induced by collisions with H2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio four-dimensional (4D) potential energy surfaces (PESs) computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD­(T)-F12b] level of theory. The method of interpolating moving least squares (IMLS) was used to construct 4D analytical PESs. Rotationally inelastic cross sections among the low-lying rotational levels of HC2NC and HNC3 were obtained using a pure quantum close-coupling approach for total energies up to ∼100 cm–1. The corresponding thermal rate coefficients were computed for temperatures ranging from 1 to 20 K. Propensity rules in favor of even Δj 1 transitions were found for both HC2NC and HNC3 in collisions with para-H2(j 2 = 0), with j 1 being the rotational level of HC2NC and HNC3 molecules. The new rate coefficients were compared to previously published HC3N–para-H2(j 2 = 0) rate coefficients. As expected, differences were found, especially for the rate coefficients corresponding to Δj 1 = 1 transitions. Such a comparison confirms the importance of having specific collisional data for the different isomers of a molecule. The new rate coefficients will be crucial to improve the estimation of the HC3N/HC2NC/HNC3 abundance ratio in the interstellar medium.</description><subject>Astrophysics</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Sciences of the Universe</subject><subject>Theoretical and</subject><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsGj_w3r00LpfSbrHEqotVLwoHpfJZmJSkmzZTcX8e7e0iODF084OzzMzvITccTbnTPAHsAHBD3XYg0VbYzfXBWNM6QsyESoTM6kScfmrvibTEHYR4VrKBVtMyPsmuA59Ezq6qiq0Q6BNT4caae7atgmN66Glqy_bDDDED3UVzUfoXdw4jC32SIuRPrsW7aEFT9dj6d0H9rfkqoI24PT83pC3x9Vrvp5tX542-XI7A6nFMLOltpqVSQrAQTEpLaqSc8YyFo9OQZS8RGlFmlZKp0wyoQtUFZYJcFkoLm_I_WluDa3Z-6YDPxoHjVkvt-bYi062yBL5eWT1ibXeheCx-hE4M8dAzZ9AzTnQ6CYnNyJm5w4-xhL-4X0DcfeBrA</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Bop, Cheikh T</creator><creator>Batista-Romero, Fidel A</creator><creator>Faure, Alexandre</creator><creator>Quintas-Sánchez, Ernesto</creator><creator>Dawes, Richard</creator><creator>Lique, François</creator><general>American Chemical Society</general><general>ACS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4378-8745</orcidid><orcidid>https://orcid.org/0000-0001-7199-2535</orcidid><orcidid>https://orcid.org/0000-0002-2493-4671</orcidid><orcidid>https://orcid.org/0000-0002-0664-2536</orcidid><orcidid>https://orcid.org/0000-0003-2369-1601</orcidid><orcidid>https://orcid.org/0000-0001-7553-4355</orcidid></search><sort><creationdate>20190718</creationdate><title>Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen</title><author>Bop, Cheikh T ; Batista-Romero, Fidel A ; Faure, Alexandre ; Quintas-Sánchez, Ernesto ; Dawes, Richard ; Lique, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-cd9c90d56aa1a4033ce4d1100702476a2d1de3c266f49603029be4fed5a13b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Sciences of the Universe</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bop, Cheikh T</creatorcontrib><creatorcontrib>Batista-Romero, Fidel A</creatorcontrib><creatorcontrib>Faure, Alexandre</creatorcontrib><creatorcontrib>Quintas-Sánchez, Ernesto</creatorcontrib><creatorcontrib>Dawes, Richard</creatorcontrib><creatorcontrib>Lique, François</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bop, Cheikh T</au><au>Batista-Romero, Fidel A</au><au>Faure, Alexandre</au><au>Quintas-Sánchez, Ernesto</au><au>Dawes, Richard</au><au>Lique, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>3</volume><issue>7</issue><spage>1151</spage><epage>1157</epage><pages>1151-1157</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>Rotational excitation of the interstellar HC2NC and HNC3 molecules, two isomers of HC3N, induced by collisions with H2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio four-dimensional (4D) potential energy surfaces (PESs) computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD­(T)-F12b] level of theory. The method of interpolating moving least squares (IMLS) was used to construct 4D analytical PESs. Rotationally inelastic cross sections among the low-lying rotational levels of HC2NC and HNC3 were obtained using a pure quantum close-coupling approach for total energies up to ∼100 cm–1. The corresponding thermal rate coefficients were computed for temperatures ranging from 1 to 20 K. Propensity rules in favor of even Δj 1 transitions were found for both HC2NC and HNC3 in collisions with para-H2(j 2 = 0), with j 1 being the rotational level of HC2NC and HNC3 molecules. The new rate coefficients were compared to previously published HC3N–para-H2(j 2 = 0) rate coefficients. As expected, differences were found, especially for the rate coefficients corresponding to Δj 1 = 1 transitions. Such a comparison confirms the importance of having specific collisional data for the different isomers of a molecule. The new rate coefficients will be crucial to improve the estimation of the HC3N/HC2NC/HNC3 abundance ratio in the interstellar medium.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.9b00049</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4378-8745</orcidid><orcidid>https://orcid.org/0000-0001-7199-2535</orcidid><orcidid>https://orcid.org/0000-0002-2493-4671</orcidid><orcidid>https://orcid.org/0000-0002-0664-2536</orcidid><orcidid>https://orcid.org/0000-0003-2369-1601</orcidid><orcidid>https://orcid.org/0000-0001-7553-4355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2019-07, Vol.3 (7), p.1151-1157
issn 2472-3452
2472-3452
language eng
recordid cdi_hal_primary_oai_HAL_hal_03078753v1
source ACS Publications
subjects Astrophysics
Chemical Sciences
or physical chemistry
Sciences of the Universe
Theoretical and
title Isomerism Effects in the Collisional Excitation of Cyanoacetylene by Molecular Hydrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomerism%20Effects%20in%20the%20Collisional%20Excitation%20of%20Cyanoacetylene%20by%20Molecular%20Hydrogen&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Bop,%20Cheikh%20T&rft.date=2019-07-18&rft.volume=3&rft.issue=7&rft.spage=1151&rft.epage=1157&rft.pages=1151-1157&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.9b00049&rft_dat=%3Cacs_hal_p%3Ec89286180%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true