Surface reactivity of Li2MnO3: Structural and morphological impact
[Display omitted] •Experimental-theoretical study: XPS, gaseous probe adsorption, DFT calculations.•The periodicity of the potential energy is not broken by the stacking fault.•Stacking faults do not impact the surface electronic structure.•Surface reactivity is governed by the morphology and the ma...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2021-03, Vol.542, p.148514, Article 148514 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 148514 |
container_title | Applied surface science |
container_volume | 542 |
creator | Quesne-Turin, Ambroise Flahaut, Delphine Salvato Vallverdu, Germain Croguennec, Laurence Allouche, Joachim Weill, François Ménétrier, Michel Baraille, Isabelle |
description | [Display omitted]
•Experimental-theoretical study: XPS, gaseous probe adsorption, DFT calculations.•The periodicity of the potential energy is not broken by the stacking fault.•Stacking faults do not impact the surface electronic structure.•Surface reactivity is governed by the morphology and the manganese environments.
This paper investigates the role of the stacking fault (5%, 20% and 50%) and the morphology of Li2MnO3 lamellar materials, issued from coprecipitation method with three annealing temperatures, on the surface reactivity. The structure and the morphology have been characterized by XRD, SEM and TEM. We studied the surface reactivity of these materials by combining X-ray photoemission spectroscopy (XPS), gaseous adsorption and first-principle calculations. An evolution of the reactivity toward the SO2 acid gaseous probe has been observed for the three materials, from pure redox mechanism toward mixed acid-base/redox mechanisms, respectively for 5% and 50% of stacking faults. We demonstrated that the electronic structure of Li2MnO3 being not modified by stacking faulted. Thus, the surface reactivity of faulted Li2MnO3 is not linked to the SF rate but only governed by the accessible crystalline surfaces and the manganese environments at the surface atomic layer. The formation of (001)-Li surface according to the Li-overstoichiometry on the extreme surface and the random particles shape of the more faulted materials are responsible of the reactivity tuning. |
doi_str_mv | 10.1016/j.apsusc.2020.148514 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03075443v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433220332724</els_id><sourcerecordid>S0169433220332724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-be22166ccbc03754e3e93b61598ee41870eafd6c0a68d5b95238a53bb1e0cc9d3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gYdcPaTu3zTxIFRRK0R6qJ6XzWRit6TdsJsU-u3dEvHoaeDN-z1mHiG3jM4YZdn9dma6MASYccqjJHPF5BmZsHwuUqVyeU4m0VakUgh-Sa5C2FLKeNxOyNN68I0BTDwa6O3B9sfENUlp-cd-JR6Sde8H6Adv2sTs62TnfLdxrfu2EBW76yJ0TS4a0wa8-Z1T8vX68vm8TMvV2_vzokxBKt6nFXLOsgygAirmSqLAQlQZU0WOKOOtFE1TZ0BNlteqKhQXuVGiqhhSgKIWU3I35m5Mqztvd8YftTNWLxelPmlU0JgrxYFFrxy94F0IHps_gFF96kxv9diZPnWmx84i9jhiGP84WPQ6gMU9YG09Qq9rZ_8P-AExcXZG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface reactivity of Li2MnO3: Structural and morphological impact</title><source>Elsevier ScienceDirect Journals</source><creator>Quesne-Turin, Ambroise ; Flahaut, Delphine ; Salvato Vallverdu, Germain ; Croguennec, Laurence ; Allouche, Joachim ; Weill, François ; Ménétrier, Michel ; Baraille, Isabelle</creator><creatorcontrib>Quesne-Turin, Ambroise ; Flahaut, Delphine ; Salvato Vallverdu, Germain ; Croguennec, Laurence ; Allouche, Joachim ; Weill, François ; Ménétrier, Michel ; Baraille, Isabelle</creatorcontrib><description>[Display omitted]
•Experimental-theoretical study: XPS, gaseous probe adsorption, DFT calculations.•The periodicity of the potential energy is not broken by the stacking fault.•Stacking faults do not impact the surface electronic structure.•Surface reactivity is governed by the morphology and the manganese environments.
This paper investigates the role of the stacking fault (5%, 20% and 50%) and the morphology of Li2MnO3 lamellar materials, issued from coprecipitation method with three annealing temperatures, on the surface reactivity. The structure and the morphology have been characterized by XRD, SEM and TEM. We studied the surface reactivity of these materials by combining X-ray photoemission spectroscopy (XPS), gaseous adsorption and first-principle calculations. An evolution of the reactivity toward the SO2 acid gaseous probe has been observed for the three materials, from pure redox mechanism toward mixed acid-base/redox mechanisms, respectively for 5% and 50% of stacking faults. We demonstrated that the electronic structure of Li2MnO3 being not modified by stacking faulted. Thus, the surface reactivity of faulted Li2MnO3 is not linked to the SF rate but only governed by the accessible crystalline surfaces and the manganese environments at the surface atomic layer. The formation of (001)-Li surface according to the Li-overstoichiometry on the extreme surface and the random particles shape of the more faulted materials are responsible of the reactivity tuning.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2020.148514</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical Sciences ; Chemisorption ; Inorganic chemistry ; Li-ion battery ; Li2MnO3 ; Material chemistry ; Stacking fault ; Surface reactivity</subject><ispartof>Applied surface science, 2021-03, Vol.542, p.148514, Article 148514</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-be22166ccbc03754e3e93b61598ee41870eafd6c0a68d5b95238a53bb1e0cc9d3</citedby><cites>FETCH-LOGICAL-c452t-be22166ccbc03754e3e93b61598ee41870eafd6c0a68d5b95238a53bb1e0cc9d3</cites><orcidid>0000-0002-3018-0992 ; 0000-0001-6787-2928 ; 0000-0001-8331-6075 ; 0000-0002-0846-8009 ; 0000-0002-0556-5399 ; 0000-0003-1116-8776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2020.148514$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03075443$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quesne-Turin, Ambroise</creatorcontrib><creatorcontrib>Flahaut, Delphine</creatorcontrib><creatorcontrib>Salvato Vallverdu, Germain</creatorcontrib><creatorcontrib>Croguennec, Laurence</creatorcontrib><creatorcontrib>Allouche, Joachim</creatorcontrib><creatorcontrib>Weill, François</creatorcontrib><creatorcontrib>Ménétrier, Michel</creatorcontrib><creatorcontrib>Baraille, Isabelle</creatorcontrib><title>Surface reactivity of Li2MnO3: Structural and morphological impact</title><title>Applied surface science</title><description>[Display omitted]
•Experimental-theoretical study: XPS, gaseous probe adsorption, DFT calculations.•The periodicity of the potential energy is not broken by the stacking fault.•Stacking faults do not impact the surface electronic structure.•Surface reactivity is governed by the morphology and the manganese environments.
This paper investigates the role of the stacking fault (5%, 20% and 50%) and the morphology of Li2MnO3 lamellar materials, issued from coprecipitation method with three annealing temperatures, on the surface reactivity. The structure and the morphology have been characterized by XRD, SEM and TEM. We studied the surface reactivity of these materials by combining X-ray photoemission spectroscopy (XPS), gaseous adsorption and first-principle calculations. An evolution of the reactivity toward the SO2 acid gaseous probe has been observed for the three materials, from pure redox mechanism toward mixed acid-base/redox mechanisms, respectively for 5% and 50% of stacking faults. We demonstrated that the electronic structure of Li2MnO3 being not modified by stacking faulted. Thus, the surface reactivity of faulted Li2MnO3 is not linked to the SF rate but only governed by the accessible crystalline surfaces and the manganese environments at the surface atomic layer. The formation of (001)-Li surface according to the Li-overstoichiometry on the extreme surface and the random particles shape of the more faulted materials are responsible of the reactivity tuning.</description><subject>Chemical Sciences</subject><subject>Chemisorption</subject><subject>Inorganic chemistry</subject><subject>Li-ion battery</subject><subject>Li2MnO3</subject><subject>Material chemistry</subject><subject>Stacking fault</subject><subject>Surface reactivity</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gYdcPaTu3zTxIFRRK0R6qJ6XzWRit6TdsJsU-u3dEvHoaeDN-z1mHiG3jM4YZdn9dma6MASYccqjJHPF5BmZsHwuUqVyeU4m0VakUgh-Sa5C2FLKeNxOyNN68I0BTDwa6O3B9sfENUlp-cd-JR6Sde8H6Adv2sTs62TnfLdxrfu2EBW76yJ0TS4a0wa8-Z1T8vX68vm8TMvV2_vzokxBKt6nFXLOsgygAirmSqLAQlQZU0WOKOOtFE1TZ0BNlteqKhQXuVGiqhhSgKIWU3I35m5Mqztvd8YftTNWLxelPmlU0JgrxYFFrxy94F0IHps_gFF96kxv9diZPnWmx84i9jhiGP84WPQ6gMU9YG09Qq9rZ_8P-AExcXZG</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Quesne-Turin, Ambroise</creator><creator>Flahaut, Delphine</creator><creator>Salvato Vallverdu, Germain</creator><creator>Croguennec, Laurence</creator><creator>Allouche, Joachim</creator><creator>Weill, François</creator><creator>Ménétrier, Michel</creator><creator>Baraille, Isabelle</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3018-0992</orcidid><orcidid>https://orcid.org/0000-0001-6787-2928</orcidid><orcidid>https://orcid.org/0000-0001-8331-6075</orcidid><orcidid>https://orcid.org/0000-0002-0846-8009</orcidid><orcidid>https://orcid.org/0000-0002-0556-5399</orcidid><orcidid>https://orcid.org/0000-0003-1116-8776</orcidid></search><sort><creationdate>20210315</creationdate><title>Surface reactivity of Li2MnO3: Structural and morphological impact</title><author>Quesne-Turin, Ambroise ; Flahaut, Delphine ; Salvato Vallverdu, Germain ; Croguennec, Laurence ; Allouche, Joachim ; Weill, François ; Ménétrier, Michel ; Baraille, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-be22166ccbc03754e3e93b61598ee41870eafd6c0a68d5b95238a53bb1e0cc9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Chemisorption</topic><topic>Inorganic chemistry</topic><topic>Li-ion battery</topic><topic>Li2MnO3</topic><topic>Material chemistry</topic><topic>Stacking fault</topic><topic>Surface reactivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quesne-Turin, Ambroise</creatorcontrib><creatorcontrib>Flahaut, Delphine</creatorcontrib><creatorcontrib>Salvato Vallverdu, Germain</creatorcontrib><creatorcontrib>Croguennec, Laurence</creatorcontrib><creatorcontrib>Allouche, Joachim</creatorcontrib><creatorcontrib>Weill, François</creatorcontrib><creatorcontrib>Ménétrier, Michel</creatorcontrib><creatorcontrib>Baraille, Isabelle</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quesne-Turin, Ambroise</au><au>Flahaut, Delphine</au><au>Salvato Vallverdu, Germain</au><au>Croguennec, Laurence</au><au>Allouche, Joachim</au><au>Weill, François</au><au>Ménétrier, Michel</au><au>Baraille, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface reactivity of Li2MnO3: Structural and morphological impact</atitle><jtitle>Applied surface science</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>542</volume><spage>148514</spage><pages>148514-</pages><artnum>148514</artnum><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted]
•Experimental-theoretical study: XPS, gaseous probe adsorption, DFT calculations.•The periodicity of the potential energy is not broken by the stacking fault.•Stacking faults do not impact the surface electronic structure.•Surface reactivity is governed by the morphology and the manganese environments.
This paper investigates the role of the stacking fault (5%, 20% and 50%) and the morphology of Li2MnO3 lamellar materials, issued from coprecipitation method with three annealing temperatures, on the surface reactivity. The structure and the morphology have been characterized by XRD, SEM and TEM. We studied the surface reactivity of these materials by combining X-ray photoemission spectroscopy (XPS), gaseous adsorption and first-principle calculations. An evolution of the reactivity toward the SO2 acid gaseous probe has been observed for the three materials, from pure redox mechanism toward mixed acid-base/redox mechanisms, respectively for 5% and 50% of stacking faults. We demonstrated that the electronic structure of Li2MnO3 being not modified by stacking faulted. Thus, the surface reactivity of faulted Li2MnO3 is not linked to the SF rate but only governed by the accessible crystalline surfaces and the manganese environments at the surface atomic layer. The formation of (001)-Li surface according to the Li-overstoichiometry on the extreme surface and the random particles shape of the more faulted materials are responsible of the reactivity tuning.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2020.148514</doi><orcidid>https://orcid.org/0000-0002-3018-0992</orcidid><orcidid>https://orcid.org/0000-0001-6787-2928</orcidid><orcidid>https://orcid.org/0000-0001-8331-6075</orcidid><orcidid>https://orcid.org/0000-0002-0846-8009</orcidid><orcidid>https://orcid.org/0000-0002-0556-5399</orcidid><orcidid>https://orcid.org/0000-0003-1116-8776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2021-03, Vol.542, p.148514, Article 148514 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03075443v1 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical Sciences Chemisorption Inorganic chemistry Li-ion battery Li2MnO3 Material chemistry Stacking fault Surface reactivity |
title | Surface reactivity of Li2MnO3: Structural and morphological impact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20reactivity%20of%20Li2MnO3:%20Structural%20and%20morphological%20impact&rft.jtitle=Applied%20surface%20science&rft.au=Quesne-Turin,%20Ambroise&rft.date=2021-03-15&rft.volume=542&rft.spage=148514&rft.pages=148514-&rft.artnum=148514&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2020.148514&rft_dat=%3Celsevier_hal_p%3ES0169433220332724%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0169433220332724&rfr_iscdi=true |