Multi-classifier majority voting analyses in provenance studies on iron artefacts
The main objective of this paper is to propose an approach for identification of provenance of archaeological iron artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis of the following techniques: Linear Discriminant Analysis (LDA), Sup...
Gespeichert in:
Veröffentlicht in: | Journal of archaeological science 2020-01, Vol.113, p.105055, Article 105055 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105055 |
container_title | Journal of archaeological science |
container_volume | 113 |
creator | Żabiński, Grzegorz Gramacki, Jarosław Gramacki, Artur Miśta-Jakubowska, Ewelina Birch, Thomas Disser, Alexandre |
description | The main objective of this paper is to propose an approach for identification of provenance of archaeological iron artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis of the following techniques: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Partitioning and Regression Trees (RPART) and Kernel Discriminant Analysis (KDA). A final assignment of a given observation to a regional class was carried out on the basis of results provided by all classifiers using a majority voting technique. The proposed approach was first tested on experimental slag and then it was applied to actual archaeological data. It is hoped that this method can become part of a new integrated approach which will consider all available types of data, such as major and trace elements and isotopic ratios. |
doi_str_mv | 10.1016/j.jas.2019.105055 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03070417v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305440319301426</els_id><sourcerecordid>S0305440319301426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-c5d231839b9323c7d7d31b3cfcaf1497c373a0a93d95ddb3e4511e98859ef2593</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuuHrZmNht3g6dS1AoVEfQcpvmjWba7kqQL_famrHj0MsM83ht4P0KugS2Awd1tu2gxLkoGMt-CCXFCZsCkKGTJm1MyY5yJoqoYPycXMbaMAQhRzsjby75LvtAdxuidt4HusB2CTwc6Dsn3nxR77A7RRup7-h2G0fbYa0tj2huf1aGnPuSBIVmHOsVLcuawi_bqd8_Jx-PD-2pdbF6fnlfLTaF5XaVCC1NyaLjcSl5yXZvacNhy7TQ6qGSdXRwZSm6kMGbLbSUArGwaIa0rheRzcjP9_cJOfQe_w3BQA3q1Xm7UUcuVa1ZBPUL2wuTVYYgxWPcXAKaO_FSrMj915KcmfjlzP2VsLjFmMipqb3N144PVSZnB_5P-AXDteJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-classifier majority voting analyses in provenance studies on iron artefacts</title><source>Elsevier ScienceDirect Journals</source><creator>Żabiński, Grzegorz ; Gramacki, Jarosław ; Gramacki, Artur ; Miśta-Jakubowska, Ewelina ; Birch, Thomas ; Disser, Alexandre</creator><creatorcontrib>Żabiński, Grzegorz ; Gramacki, Jarosław ; Gramacki, Artur ; Miśta-Jakubowska, Ewelina ; Birch, Thomas ; Disser, Alexandre</creatorcontrib><description>The main objective of this paper is to propose an approach for identification of provenance of archaeological iron artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis of the following techniques: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Partitioning and Regression Trees (RPART) and Kernel Discriminant Analysis (KDA). A final assignment of a given observation to a regional class was carried out on the basis of results provided by all classifiers using a majority voting technique. The proposed approach was first tested on experimental slag and then it was applied to actual archaeological data. It is hoped that this method can become part of a new integrated approach which will consider all available types of data, such as major and trace elements and isotopic ratios.</description><identifier>ISSN: 0305-4403</identifier><identifier>EISSN: 1095-9238</identifier><identifier>DOI: 10.1016/j.jas.2019.105055</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Archaeological iron ; Archaeology and Prehistory ; Classification ; Engineering Sciences ; History of metallurgy ; Humanities and Social Sciences ; Materials ; Mathematics ; Multivariate statistics ; Provenance studies ; Slag inclusions ; Statistics</subject><ispartof>Journal of archaeological science, 2020-01, Vol.113, p.105055, Article 105055</ispartof><rights>2019 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-c5d231839b9323c7d7d31b3cfcaf1497c373a0a93d95ddb3e4511e98859ef2593</citedby><cites>FETCH-LOGICAL-c374t-c5d231839b9323c7d7d31b3cfcaf1497c373a0a93d95ddb3e4511e98859ef2593</cites><orcidid>0000-0003-0914-2606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305440319301426$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03070417$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Żabiński, Grzegorz</creatorcontrib><creatorcontrib>Gramacki, Jarosław</creatorcontrib><creatorcontrib>Gramacki, Artur</creatorcontrib><creatorcontrib>Miśta-Jakubowska, Ewelina</creatorcontrib><creatorcontrib>Birch, Thomas</creatorcontrib><creatorcontrib>Disser, Alexandre</creatorcontrib><title>Multi-classifier majority voting analyses in provenance studies on iron artefacts</title><title>Journal of archaeological science</title><description>The main objective of this paper is to propose an approach for identification of provenance of archaeological iron artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis of the following techniques: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Partitioning and Regression Trees (RPART) and Kernel Discriminant Analysis (KDA). A final assignment of a given observation to a regional class was carried out on the basis of results provided by all classifiers using a majority voting technique. The proposed approach was first tested on experimental slag and then it was applied to actual archaeological data. It is hoped that this method can become part of a new integrated approach which will consider all available types of data, such as major and trace elements and isotopic ratios.</description><subject>Archaeological iron</subject><subject>Archaeology and Prehistory</subject><subject>Classification</subject><subject>Engineering Sciences</subject><subject>History of metallurgy</subject><subject>Humanities and Social Sciences</subject><subject>Materials</subject><subject>Mathematics</subject><subject>Multivariate statistics</subject><subject>Provenance studies</subject><subject>Slag inclusions</subject><subject>Statistics</subject><issn>0305-4403</issn><issn>1095-9238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuuHrZmNht3g6dS1AoVEfQcpvmjWba7kqQL_famrHj0MsM83ht4P0KugS2Awd1tu2gxLkoGMt-CCXFCZsCkKGTJm1MyY5yJoqoYPycXMbaMAQhRzsjby75LvtAdxuidt4HusB2CTwc6Dsn3nxR77A7RRup7-h2G0fbYa0tj2huf1aGnPuSBIVmHOsVLcuawi_bqd8_Jx-PD-2pdbF6fnlfLTaF5XaVCC1NyaLjcSl5yXZvacNhy7TQ6qGSdXRwZSm6kMGbLbSUArGwaIa0rheRzcjP9_cJOfQe_w3BQA3q1Xm7UUcuVa1ZBPUL2wuTVYYgxWPcXAKaO_FSrMj915KcmfjlzP2VsLjFmMipqb3N144PVSZnB_5P-AXDteJI</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Żabiński, Grzegorz</creator><creator>Gramacki, Jarosław</creator><creator>Gramacki, Artur</creator><creator>Miśta-Jakubowska, Ewelina</creator><creator>Birch, Thomas</creator><creator>Disser, Alexandre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0914-2606</orcidid></search><sort><creationdate>202001</creationdate><title>Multi-classifier majority voting analyses in provenance studies on iron artefacts</title><author>Żabiński, Grzegorz ; Gramacki, Jarosław ; Gramacki, Artur ; Miśta-Jakubowska, Ewelina ; Birch, Thomas ; Disser, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-c5d231839b9323c7d7d31b3cfcaf1497c373a0a93d95ddb3e4511e98859ef2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Archaeological iron</topic><topic>Archaeology and Prehistory</topic><topic>Classification</topic><topic>Engineering Sciences</topic><topic>History of metallurgy</topic><topic>Humanities and Social Sciences</topic><topic>Materials</topic><topic>Mathematics</topic><topic>Multivariate statistics</topic><topic>Provenance studies</topic><topic>Slag inclusions</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Żabiński, Grzegorz</creatorcontrib><creatorcontrib>Gramacki, Jarosław</creatorcontrib><creatorcontrib>Gramacki, Artur</creatorcontrib><creatorcontrib>Miśta-Jakubowska, Ewelina</creatorcontrib><creatorcontrib>Birch, Thomas</creatorcontrib><creatorcontrib>Disser, Alexandre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of archaeological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Żabiński, Grzegorz</au><au>Gramacki, Jarosław</au><au>Gramacki, Artur</au><au>Miśta-Jakubowska, Ewelina</au><au>Birch, Thomas</au><au>Disser, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-classifier majority voting analyses in provenance studies on iron artefacts</atitle><jtitle>Journal of archaeological science</jtitle><date>2020-01</date><risdate>2020</risdate><volume>113</volume><spage>105055</spage><pages>105055-</pages><artnum>105055</artnum><issn>0305-4403</issn><eissn>1095-9238</eissn><abstract>The main objective of this paper is to propose an approach for identification of provenance of archaeological iron artefacts making use of major oxides and trace elements. For this purpose, seven classifiers were built on the basis of the following techniques: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbours (KNN), Recursive Partitioning and Regression Trees (RPART) and Kernel Discriminant Analysis (KDA). A final assignment of a given observation to a regional class was carried out on the basis of results provided by all classifiers using a majority voting technique. The proposed approach was first tested on experimental slag and then it was applied to actual archaeological data. It is hoped that this method can become part of a new integrated approach which will consider all available types of data, such as major and trace elements and isotopic ratios.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jas.2019.105055</doi><orcidid>https://orcid.org/0000-0003-0914-2606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-4403 |
ispartof | Journal of archaeological science, 2020-01, Vol.113, p.105055, Article 105055 |
issn | 0305-4403 1095-9238 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03070417v1 |
source | Elsevier ScienceDirect Journals |
subjects | Archaeological iron Archaeology and Prehistory Classification Engineering Sciences History of metallurgy Humanities and Social Sciences Materials Mathematics Multivariate statistics Provenance studies Slag inclusions Statistics |
title | Multi-classifier majority voting analyses in provenance studies on iron artefacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-classifier%20majority%20voting%20analyses%20in%20provenance%20studies%20on%20iron%20artefacts&rft.jtitle=Journal%20of%20archaeological%20science&rft.au=%C5%BBabi%C5%84ski,%20Grzegorz&rft.date=2020-01&rft.volume=113&rft.spage=105055&rft.pages=105055-&rft.artnum=105055&rft.issn=0305-4403&rft.eissn=1095-9238&rft_id=info:doi/10.1016/j.jas.2019.105055&rft_dat=%3Celsevier_hal_p%3ES0305440319301426%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0305440319301426&rfr_iscdi=true |