Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines

The second-order nonlinear optical responses of a series of recently designed dipolar merocyanines are investigated using the 2006 Minnesota family of hybrid exchange-correlation functionals (XCFs), as well as the LC-BLYP, ωB97XD and CAM-B3LYP long-range (LR) corrected XCFs. The performance of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-08, Vol.22 (29), p.16579-16594
Hauptverfasser: Lescos, Laurie, Sitkiewicz, Sebastian P, Beaujean, Pierre, Blanchard-Desce, Mireille, Champagne, Benoît, Matito, Eduard, Castet, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16594
container_issue 29
container_start_page 16579
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Lescos, Laurie
Sitkiewicz, Sebastian P
Beaujean, Pierre
Blanchard-Desce, Mireille
Champagne, Benoît
Matito, Eduard
Castet, Frédéric
description The second-order nonlinear optical responses of a series of recently designed dipolar merocyanines are investigated using the 2006 Minnesota family of hybrid exchange-correlation functionals (XCFs), as well as the LC-BLYP, ωB97XD and CAM-B3LYP long-range (LR) corrected XCFs. The performance of these different levels of approximation is discussed in regard to reference second-order Møller-Plesset calculations and experimental data obtained from Hyper-Rayleigh Scattering (HRS) measurements. Particular focus is given to the influence of the amount of exact Hartree-Fock exchange included in the XCF on the magnitude of the static HRS responses, as well as to the impact of tuning the range-separation parameter in LR-XCFs, according to a system-specific nonempirical procedure. Frequency dispersion effects are also investigated, as well as their crucial role in the comparison between theoretical and experimental data. Evolution of the static HRS hyperpolarizability of a tricyanopropylidene-based merocyanine dye with the length of the polyenic bridge, as calculated using various ab initio and DFT approximations.
doi_str_mv 10.1039/d0cp02992k
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03066215v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424998341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-5fdd17aefe3da1a093954323ed59bd7317df6b2016cc4f520b943cc332f39bc33</originalsourceid><addsrcrecordid>eNp90U1rGzEQBuClJNDEzaX3gEIvSWEbfe2udTR2UpcY6kN6FrI0auSupY20G_C_jzYOLvTQ0wi9D8MwUxSfCf5GMBO3BusOUyHonw_FGeE1KwWe8pPju6k_FucpbTHGpCLsrOjXEG2IO-U1oGDR4v4R2cHr3gWv2oRyhrRq9dCq3vnfqH8ClEAHb8oQDUTkg2-dBxVR6HqXKepi6CD2DtLY0LgutDndQQx6r3y26VNxanNzuHivk-LX_d3jfFmufn7_MZ-tSs0r2peVNYY0Ciwwo4jCgomKM8rAVGJjGkYaY-sNxaTWmtuK4o3gTGvGqGVik-ukuDn0fVKt7KLbqbiXQTm5nK3k-IcZrmtKqheS7fXB5vGfB0i93LmkoW2VhzAkSTnlQkwZH-mXf-g2DHFc16imeFo1XGT19aB0DClFsMcJCJbjseQCz9dvx3rI-PKAY9JH9_eYOb_6Xy47Y9krrfadMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428085749</pqid></control><display><type>article</type><title>Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Lescos, Laurie ; Sitkiewicz, Sebastian P ; Beaujean, Pierre ; Blanchard-Desce, Mireille ; Champagne, Benoît ; Matito, Eduard ; Castet, Frédéric</creator><creatorcontrib>Lescos, Laurie ; Sitkiewicz, Sebastian P ; Beaujean, Pierre ; Blanchard-Desce, Mireille ; Champagne, Benoît ; Matito, Eduard ; Castet, Frédéric</creatorcontrib><description>The second-order nonlinear optical responses of a series of recently designed dipolar merocyanines are investigated using the 2006 Minnesota family of hybrid exchange-correlation functionals (XCFs), as well as the LC-BLYP, ωB97XD and CAM-B3LYP long-range (LR) corrected XCFs. The performance of these different levels of approximation is discussed in regard to reference second-order Møller-Plesset calculations and experimental data obtained from Hyper-Rayleigh Scattering (HRS) measurements. Particular focus is given to the influence of the amount of exact Hartree-Fock exchange included in the XCF on the magnitude of the static HRS responses, as well as to the impact of tuning the range-separation parameter in LR-XCFs, according to a system-specific nonempirical procedure. Frequency dispersion effects are also investigated, as well as their crucial role in the comparison between theoretical and experimental data. Evolution of the static HRS hyperpolarizability of a tricyanopropylidene-based merocyanine dye with the length of the polyenic bridge, as calculated using various ab initio and DFT approximations.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp02992k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; Density functional theory ; Exchanging ; Mathematical analysis ; Nonlinear optics ; Optical properties ; Parameters ; Rayleigh scattering ; Separation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (29), p.16579-16594</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-5fdd17aefe3da1a093954323ed59bd7317df6b2016cc4f520b943cc332f39bc33</citedby><cites>FETCH-LOGICAL-c452t-5fdd17aefe3da1a093954323ed59bd7317df6b2016cc4f520b943cc332f39bc33</cites><orcidid>0000-0003-3723-3257 ; 0000-0001-6895-4562 ; 0000-0002-1572-9545 ; 0000-0003-3678-8875 ; 0000-0001-7493-5771 ; 0000-0002-6622-2402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03066215$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lescos, Laurie</creatorcontrib><creatorcontrib>Sitkiewicz, Sebastian P</creatorcontrib><creatorcontrib>Beaujean, Pierre</creatorcontrib><creatorcontrib>Blanchard-Desce, Mireille</creatorcontrib><creatorcontrib>Champagne, Benoît</creatorcontrib><creatorcontrib>Matito, Eduard</creatorcontrib><creatorcontrib>Castet, Frédéric</creatorcontrib><title>Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines</title><title>Physical chemistry chemical physics : PCCP</title><description>The second-order nonlinear optical responses of a series of recently designed dipolar merocyanines are investigated using the 2006 Minnesota family of hybrid exchange-correlation functionals (XCFs), as well as the LC-BLYP, ωB97XD and CAM-B3LYP long-range (LR) corrected XCFs. The performance of these different levels of approximation is discussed in regard to reference second-order Møller-Plesset calculations and experimental data obtained from Hyper-Rayleigh Scattering (HRS) measurements. Particular focus is given to the influence of the amount of exact Hartree-Fock exchange included in the XCF on the magnitude of the static HRS responses, as well as to the impact of tuning the range-separation parameter in LR-XCFs, according to a system-specific nonempirical procedure. Frequency dispersion effects are also investigated, as well as their crucial role in the comparison between theoretical and experimental data. Evolution of the static HRS hyperpolarizability of a tricyanopropylidene-based merocyanine dye with the length of the polyenic bridge, as calculated using various ab initio and DFT approximations.</description><subject>Chemical Sciences</subject><subject>Density functional theory</subject><subject>Exchanging</subject><subject>Mathematical analysis</subject><subject>Nonlinear optics</subject><subject>Optical properties</subject><subject>Parameters</subject><subject>Rayleigh scattering</subject><subject>Separation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1rGzEQBuClJNDEzaX3gEIvSWEbfe2udTR2UpcY6kN6FrI0auSupY20G_C_jzYOLvTQ0wi9D8MwUxSfCf5GMBO3BusOUyHonw_FGeE1KwWe8pPju6k_FucpbTHGpCLsrOjXEG2IO-U1oGDR4v4R2cHr3gWv2oRyhrRq9dCq3vnfqH8ClEAHb8oQDUTkg2-dBxVR6HqXKepi6CD2DtLY0LgutDndQQx6r3y26VNxanNzuHivk-LX_d3jfFmufn7_MZ-tSs0r2peVNYY0Ciwwo4jCgomKM8rAVGJjGkYaY-sNxaTWmtuK4o3gTGvGqGVik-ukuDn0fVKt7KLbqbiXQTm5nK3k-IcZrmtKqheS7fXB5vGfB0i93LmkoW2VhzAkSTnlQkwZH-mXf-g2DHFc16imeFo1XGT19aB0DClFsMcJCJbjseQCz9dvx3rI-PKAY9JH9_eYOb_6Xy47Y9krrfadMA</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Lescos, Laurie</creator><creator>Sitkiewicz, Sebastian P</creator><creator>Beaujean, Pierre</creator><creator>Blanchard-Desce, Mireille</creator><creator>Champagne, Benoît</creator><creator>Matito, Eduard</creator><creator>Castet, Frédéric</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3723-3257</orcidid><orcidid>https://orcid.org/0000-0001-6895-4562</orcidid><orcidid>https://orcid.org/0000-0002-1572-9545</orcidid><orcidid>https://orcid.org/0000-0003-3678-8875</orcidid><orcidid>https://orcid.org/0000-0001-7493-5771</orcidid><orcidid>https://orcid.org/0000-0002-6622-2402</orcidid></search><sort><creationdate>20200807</creationdate><title>Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines</title><author>Lescos, Laurie ; Sitkiewicz, Sebastian P ; Beaujean, Pierre ; Blanchard-Desce, Mireille ; Champagne, Benoît ; Matito, Eduard ; Castet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-5fdd17aefe3da1a093954323ed59bd7317df6b2016cc4f520b943cc332f39bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Density functional theory</topic><topic>Exchanging</topic><topic>Mathematical analysis</topic><topic>Nonlinear optics</topic><topic>Optical properties</topic><topic>Parameters</topic><topic>Rayleigh scattering</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lescos, Laurie</creatorcontrib><creatorcontrib>Sitkiewicz, Sebastian P</creatorcontrib><creatorcontrib>Beaujean, Pierre</creatorcontrib><creatorcontrib>Blanchard-Desce, Mireille</creatorcontrib><creatorcontrib>Champagne, Benoît</creatorcontrib><creatorcontrib>Matito, Eduard</creatorcontrib><creatorcontrib>Castet, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lescos, Laurie</au><au>Sitkiewicz, Sebastian P</au><au>Beaujean, Pierre</au><au>Blanchard-Desce, Mireille</au><au>Champagne, Benoît</au><au>Matito, Eduard</au><au>Castet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-08-07</date><risdate>2020</risdate><volume>22</volume><issue>29</issue><spage>16579</spage><epage>16594</epage><pages>16579-16594</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The second-order nonlinear optical responses of a series of recently designed dipolar merocyanines are investigated using the 2006 Minnesota family of hybrid exchange-correlation functionals (XCFs), as well as the LC-BLYP, ωB97XD and CAM-B3LYP long-range (LR) corrected XCFs. The performance of these different levels of approximation is discussed in regard to reference second-order Møller-Plesset calculations and experimental data obtained from Hyper-Rayleigh Scattering (HRS) measurements. Particular focus is given to the influence of the amount of exact Hartree-Fock exchange included in the XCF on the magnitude of the static HRS responses, as well as to the impact of tuning the range-separation parameter in LR-XCFs, according to a system-specific nonempirical procedure. Frequency dispersion effects are also investigated, as well as their crucial role in the comparison between theoretical and experimental data. Evolution of the static HRS hyperpolarizability of a tricyanopropylidene-based merocyanine dye with the length of the polyenic bridge, as calculated using various ab initio and DFT approximations.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp02992k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3723-3257</orcidid><orcidid>https://orcid.org/0000-0001-6895-4562</orcidid><orcidid>https://orcid.org/0000-0002-1572-9545</orcidid><orcidid>https://orcid.org/0000-0003-3678-8875</orcidid><orcidid>https://orcid.org/0000-0001-7493-5771</orcidid><orcidid>https://orcid.org/0000-0002-6622-2402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-08, Vol.22 (29), p.16579-16594
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_03066215v1
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Chemical Sciences
Density functional theory
Exchanging
Mathematical analysis
Nonlinear optics
Optical properties
Parameters
Rayleigh scattering
Separation
title Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20DFT%20functionals%20for%20calculating%20the%20second-order%20nonlinear%20optical%20properties%20of%20dipolar%20merocyanines&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Lescos,%20Laurie&rft.date=2020-08-07&rft.volume=22&rft.issue=29&rft.spage=16579&rft.epage=16594&rft.pages=16579-16594&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp02992k&rft_dat=%3Cproquest_hal_p%3E2424998341%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428085749&rft_id=info:pmid/&rfr_iscdi=true