Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects

The search region in multiobjective optimization problems is a part of the objective space where nondominated points could lie. It plays an important role in the generation of the nondominated set of multiobjective combinatorial optimization (MOCO) problems. In this paper, we establish the represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:4OR 2021-03, Vol.19 (1), p.41-70
Hauptverfasser: Hoai, Pham Thi, Le Thi, Hoai An, Nam, Nguyen Canh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 41
container_title 4OR
container_volume 19
creator Hoai, Pham Thi
Le Thi, Hoai An
Nam, Nguyen Canh
description The search region in multiobjective optimization problems is a part of the objective space where nondominated points could lie. It plays an important role in the generation of the nondominated set of multiobjective combinatorial optimization (MOCO) problems. In this paper, we establish the representation of the search region by half-open polyblocks (a variant concept of “polyblock” in monotonic optimization) and propose a new procedure for updating the search region. We also study the impact of stack policies to the new procedure and the existing methods that update the search region. Stack policies are then analyzed, pointing out their performance effectiveness by means of the results of rich computational experiments on finding the whole set of nondominated points of MOCO problems.
doi_str_mv 10.1007/s10288-020-00430-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03063809v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817886729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c7bc944e7c0849343a339e2e1b38450af2220250976c1a952ace2302affbca2e3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhaOKSgXaF-jKUldduFz_ZBKzQ6h0Ko3Epl1bjnvDeOrExs4gwWPwxPWMK9ixsnXPd459dZrmM4NvDKC7yAx431PgQAGkANq-a07ZiknKJWMnx7uisgX40JzlvAMQQkg4bZ7Xxo80RJxJDP5x8MH-JWNIZNkiSRgTZpwXs7gwkzAepxlNstsi3h2GbibT3hd92KFd3AOSEBc3uafqiSkMHqd8SdySiYnRO1sVM_8hNkxxX9ONJybHEpE_Nu9H4zN--n-eN79vvv-6XtPN7Y-f11cbaqUUC7XdYJWU2FnopRJSGCEUcmSD6MuiZuScA29BdSvLjGq5scgFcDOOgzUcxXnzteZujdcxucmkRx2M0-urjT7MQMBK9KAeWGG_VLbsc7_HvOhd2Kfy6ax5z7q-X3VcFYpXyqaQc8LxJZaBPvSka0-69KSPPem2mEg1oQ2zy6-Wri0dKdnxgoiK5CLOd5heX38j-B9Uh6J2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817886729</pqid></control><display><type>article</type><title>Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects</title><source>SpringerNature Journals</source><creator>Hoai, Pham Thi ; Le Thi, Hoai An ; Nam, Nguyen Canh</creator><creatorcontrib>Hoai, Pham Thi ; Le Thi, Hoai An ; Nam, Nguyen Canh</creatorcontrib><description>The search region in multiobjective optimization problems is a part of the objective space where nondominated points could lie. It plays an important role in the generation of the nondominated set of multiobjective combinatorial optimization (MOCO) problems. In this paper, we establish the representation of the search region by half-open polyblocks (a variant concept of “polyblock” in monotonic optimization) and propose a new procedure for updating the search region. We also study the impact of stack policies to the new procedure and the existing methods that update the search region. Stack policies are then analyzed, pointing out their performance effectiveness by means of the results of rich computational experiments on finding the whole set of nondominated points of MOCO problems.</description><identifier>ISSN: 1619-4500</identifier><identifier>EISSN: 1614-2411</identifier><identifier>DOI: 10.1007/s10288-020-00430-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applied mathematics ; Business and Management ; Combinatorial analysis ; Computer Science ; Industrial and Production Engineering ; Linear programming ; Multiple objective analysis ; Operations research ; Operations Research/Decision Theory ; Optimization ; Policies ; Representations ; Research Paper ; Searching</subject><ispartof>4OR, 2021-03, Vol.19 (1), p.41-70</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c7bc944e7c0849343a339e2e1b38450af2220250976c1a952ace2302affbca2e3</citedby><cites>FETCH-LOGICAL-c443t-c7bc944e7c0849343a339e2e1b38450af2220250976c1a952ace2302affbca2e3</cites><orcidid>0000-0002-2239-2100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10288-020-00430-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10288-020-00430-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03063809$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoai, Pham Thi</creatorcontrib><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Nam, Nguyen Canh</creatorcontrib><title>Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects</title><title>4OR</title><addtitle>4OR-Q J Oper Res</addtitle><description>The search region in multiobjective optimization problems is a part of the objective space where nondominated points could lie. It plays an important role in the generation of the nondominated set of multiobjective combinatorial optimization (MOCO) problems. In this paper, we establish the representation of the search region by half-open polyblocks (a variant concept of “polyblock” in monotonic optimization) and propose a new procedure for updating the search region. We also study the impact of stack policies to the new procedure and the existing methods that update the search region. Stack policies are then analyzed, pointing out their performance effectiveness by means of the results of rich computational experiments on finding the whole set of nondominated points of MOCO problems.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Business and Management</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Industrial and Production Engineering</subject><subject>Linear programming</subject><subject>Multiple objective analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Policies</subject><subject>Representations</subject><subject>Research Paper</subject><subject>Searching</subject><issn>1619-4500</issn><issn>1614-2411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1O3DAUhaOKSgXaF-jKUldduFz_ZBKzQ6h0Ko3Epl1bjnvDeOrExs4gwWPwxPWMK9ixsnXPd459dZrmM4NvDKC7yAx431PgQAGkANq-a07ZiknKJWMnx7uisgX40JzlvAMQQkg4bZ7Xxo80RJxJDP5x8MH-JWNIZNkiSRgTZpwXs7gwkzAepxlNstsi3h2GbibT3hd92KFd3AOSEBc3uafqiSkMHqd8SdySiYnRO1sVM_8hNkxxX9ONJybHEpE_Nu9H4zN--n-eN79vvv-6XtPN7Y-f11cbaqUUC7XdYJWU2FnopRJSGCEUcmSD6MuiZuScA29BdSvLjGq5scgFcDOOgzUcxXnzteZujdcxucmkRx2M0-urjT7MQMBK9KAeWGG_VLbsc7_HvOhd2Kfy6ax5z7q-X3VcFYpXyqaQc8LxJZaBPvSka0-69KSPPem2mEg1oQ2zy6-Wri0dKdnxgoiK5CLOd5heX38j-B9Uh6J2</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Hoai, Pham Thi</creator><creator>Le Thi, Hoai An</creator><creator>Nam, Nguyen Canh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></search><sort><creationdate>20210301</creationdate><title>Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects</title><author>Hoai, Pham Thi ; Le Thi, Hoai An ; Nam, Nguyen Canh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c7bc944e7c0849343a339e2e1b38450af2220250976c1a952ace2302affbca2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Business and Management</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Industrial and Production Engineering</topic><topic>Linear programming</topic><topic>Multiple objective analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Policies</topic><topic>Representations</topic><topic>Research Paper</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoai, Pham Thi</creatorcontrib><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Nam, Nguyen Canh</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>4OR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoai, Pham Thi</au><au>Le Thi, Hoai An</au><au>Nam, Nguyen Canh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects</atitle><jtitle>4OR</jtitle><stitle>4OR-Q J Oper Res</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>41</spage><epage>70</epage><pages>41-70</pages><issn>1619-4500</issn><eissn>1614-2411</eissn><abstract>The search region in multiobjective optimization problems is a part of the objective space where nondominated points could lie. It plays an important role in the generation of the nondominated set of multiobjective combinatorial optimization (MOCO) problems. In this paper, we establish the representation of the search region by half-open polyblocks (a variant concept of “polyblock” in monotonic optimization) and propose a new procedure for updating the search region. We also study the impact of stack policies to the new procedure and the existing methods that update the search region. Stack policies are then analyzed, pointing out their performance effectiveness by means of the results of rich computational experiments on finding the whole set of nondominated points of MOCO problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10288-020-00430-5</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1619-4500
ispartof 4OR, 2021-03, Vol.19 (1), p.41-70
issn 1619-4500
1614-2411
language eng
recordid cdi_hal_primary_oai_HAL_hal_03063809v1
source SpringerNature Journals
subjects Algorithms
Applied mathematics
Business and Management
Combinatorial analysis
Computer Science
Industrial and Production Engineering
Linear programming
Multiple objective analysis
Operations research
Operations Research/Decision Theory
Optimization
Policies
Representations
Research Paper
Searching
title Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half-open%20polyblock%20for%20the%20representation%20of%20the%20search%20region%20in%20multiobjective%20optimization%20problems:%20its%20application%20and%20computational%20aspects&rft.jtitle=4OR&rft.au=Hoai,%20Pham%20Thi&rft.date=2021-03-01&rft.volume=19&rft.issue=1&rft.spage=41&rft.epage=70&rft.pages=41-70&rft.issn=1619-4500&rft.eissn=1614-2411&rft_id=info:doi/10.1007/s10288-020-00430-5&rft_dat=%3Cproquest_hal_p%3E2817886729%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817886729&rft_id=info:pmid/&rfr_iscdi=true