A criterion for the pinning and depinning of an advancing contact line on a cold substrate

The influence of solidification on the spreading of liquids is addressed in the situation of an advancing liquid wedge on a cold substrate at T p < T f , where T f is the melting temperature, and infinite thermal conductivity. We propose a model of contact-line dynamics derived from lubrication t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2020-09, Vol.229 (10), p.1867-1880
Hauptverfasser: Herbaut, Rémy, Dervaux, Julien, Brunet, Philippe, Royon, Laurent, Limat, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1880
container_issue 10
container_start_page 1867
container_title The European physical journal. ST, Special topics
container_volume 229
creator Herbaut, Rémy
Dervaux, Julien
Brunet, Philippe
Royon, Laurent
Limat, Laurent
description The influence of solidification on the spreading of liquids is addressed in the situation of an advancing liquid wedge on a cold substrate at T p < T f , where T f is the melting temperature, and infinite thermal conductivity. We propose a model of contact-line dynamics derived from lubrication theory, where equilibrium between capillary pressure and viscous stress is at play. Here it is adapted to a quadruple line geometry, where vapour, liquid, frozen liquid and basal substrate meet. The Stefan thermal problem is solved in an intermediate region between molecular and mesoscopic scales, allowing to predict the shape of the solidified surface. The apparent contact angle versus advancing velocity U takes a minimal value, which is set as the transition from continuous advancing to pinning. We postulate that this transition corresponds to the experimentally observed critical velocity, dependent on undercooling temperature T f − T p , below which the liquid is pinned and advances with stick-slip dynamics. The analytical solution of the model shows a qualitatively fair agreement with experimental data, and the best agreement is obtained from the adjustment of a mesoscopic cut-off length as fitting parameter. We discuss of the dependence of this cut-off length on T p
doi_str_mv 10.1140/epjst/e2020-900261-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03051914v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450301848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8d532eeeb5771b1bf1bcda9e2618b5c2adfaec30e437ec961c48d88d2202e88b3</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9AxckrlyMBQamzLJp1Jo0caMbN4SBO-00I1SgTXx7acefnSu4J985ufcgdE3JHaWcTGC7iWkCjDBS1ISwihbiBI1oLWhRcUJPf_6lEOfoIsYNIaJidTlCbzNsQpcgdN7h1gec1oC3nXOdW2HtLLbwM_k2C1jbvXbmMBvvkjYJ950DnN06K73FcdfEFHSCS3TW6j7C1fc7Rq8P9y_zRbF8fnyaz5aF4USkQlpRMgBoxHRKG9q0tDFW15CvkI0wTNtWgykJ8HIKpq6o4dJKaVk-F6RsyjG6HXLXulfb0L3r8Km87tRitlQHjZRE0JryPcvszcBug__YQUxq43fB5fUU4yKDVHKZKT5QJvgYA7S_sZSoQ-Pq2Lg6Nq6GxpXINjHYYsbdCsJf-L--L9F1htI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450301848</pqid></control><display><type>article</type><title>A criterion for the pinning and depinning of an advancing contact line on a cold substrate</title><source>SpringerLink Journals - AutoHoldings</source><creator>Herbaut, Rémy ; Dervaux, Julien ; Brunet, Philippe ; Royon, Laurent ; Limat, Laurent</creator><creatorcontrib>Herbaut, Rémy ; Dervaux, Julien ; Brunet, Philippe ; Royon, Laurent ; Limat, Laurent</creatorcontrib><description>The influence of solidification on the spreading of liquids is addressed in the situation of an advancing liquid wedge on a cold substrate at T p &lt; T f , where T f is the melting temperature, and infinite thermal conductivity. We propose a model of contact-line dynamics derived from lubrication theory, where equilibrium between capillary pressure and viscous stress is at play. Here it is adapted to a quadruple line geometry, where vapour, liquid, frozen liquid and basal substrate meet. The Stefan thermal problem is solved in an intermediate region between molecular and mesoscopic scales, allowing to predict the shape of the solidified surface. The apparent contact angle versus advancing velocity U takes a minimal value, which is set as the transition from continuous advancing to pinning. We postulate that this transition corresponds to the experimentally observed critical velocity, dependent on undercooling temperature T f − T p , below which the liquid is pinned and advances with stick-slip dynamics. The analytical solution of the model shows a qualitatively fair agreement with experimental data, and the best agreement is obtained from the adjustment of a mesoscopic cut-off length as fitting parameter. We discuss of the dependence of this cut-off length on T p</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900261-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Biological Physics ; Capillary pressure ; Challenges in Nanoscale Physics of Wetting Phenomena ; Classical and Continuum Physics ; Condensed Matter ; Condensed Matter Physics ; Contact angle ; Contact pressure ; Critical velocity ; Exact solutions ; Fluid Dynamics ; Fluid mechanics ; Materials Science ; Measurement Science and Instrumentation ; Mechanics ; Melt temperature ; Molecular ; Nonlinear Sciences ; Optical and Plasma Physics ; Pattern Formation and Solitons ; Physics ; Physics and Astronomy ; Pinning ; Regular Article ; Soft Condensed Matter ; Solidification ; Substrates ; Supercooling ; Temperature dependence ; Thermal conductivity</subject><ispartof>The European physical journal. ST, Special topics, 2020-09, Vol.229 (10), p.1867-1880</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8d532eeeb5771b1bf1bcda9e2618b5c2adfaec30e437ec961c48d88d2202e88b3</citedby><cites>FETCH-LOGICAL-c405t-8d532eeeb5771b1bf1bcda9e2618b5c2adfaec30e437ec961c48d88d2202e88b3</cites><orcidid>0000-0001-8487-5362 ; 0000-0002-2458-144X ; 0000-0002-2878-4279 ; 0000-0003-4619-1423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2020-900261-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2020-900261-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03051914$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbaut, Rémy</creatorcontrib><creatorcontrib>Dervaux, Julien</creatorcontrib><creatorcontrib>Brunet, Philippe</creatorcontrib><creatorcontrib>Royon, Laurent</creatorcontrib><creatorcontrib>Limat, Laurent</creatorcontrib><title>A criterion for the pinning and depinning of an advancing contact line on a cold substrate</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>The influence of solidification on the spreading of liquids is addressed in the situation of an advancing liquid wedge on a cold substrate at T p &lt; T f , where T f is the melting temperature, and infinite thermal conductivity. We propose a model of contact-line dynamics derived from lubrication theory, where equilibrium between capillary pressure and viscous stress is at play. Here it is adapted to a quadruple line geometry, where vapour, liquid, frozen liquid and basal substrate meet. The Stefan thermal problem is solved in an intermediate region between molecular and mesoscopic scales, allowing to predict the shape of the solidified surface. The apparent contact angle versus advancing velocity U takes a minimal value, which is set as the transition from continuous advancing to pinning. We postulate that this transition corresponds to the experimentally observed critical velocity, dependent on undercooling temperature T f − T p , below which the liquid is pinned and advances with stick-slip dynamics. The analytical solution of the model shows a qualitatively fair agreement with experimental data, and the best agreement is obtained from the adjustment of a mesoscopic cut-off length as fitting parameter. We discuss of the dependence of this cut-off length on T p</description><subject>Atomic</subject><subject>Biological Physics</subject><subject>Capillary pressure</subject><subject>Challenges in Nanoscale Physics of Wetting Phenomena</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Contact pressure</subject><subject>Critical velocity</subject><subject>Exact solutions</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Mechanics</subject><subject>Melt temperature</subject><subject>Molecular</subject><subject>Nonlinear Sciences</subject><subject>Optical and Plasma Physics</subject><subject>Pattern Formation and Solitons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pinning</subject><subject>Regular Article</subject><subject>Soft Condensed Matter</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Supercooling</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9AxckrlyMBQamzLJp1Jo0caMbN4SBO-00I1SgTXx7acefnSu4J985ufcgdE3JHaWcTGC7iWkCjDBS1ISwihbiBI1oLWhRcUJPf_6lEOfoIsYNIaJidTlCbzNsQpcgdN7h1gec1oC3nXOdW2HtLLbwM_k2C1jbvXbmMBvvkjYJ950DnN06K73FcdfEFHSCS3TW6j7C1fc7Rq8P9y_zRbF8fnyaz5aF4USkQlpRMgBoxHRKG9q0tDFW15CvkI0wTNtWgykJ8HIKpq6o4dJKaVk-F6RsyjG6HXLXulfb0L3r8Km87tRitlQHjZRE0JryPcvszcBug__YQUxq43fB5fUU4yKDVHKZKT5QJvgYA7S_sZSoQ-Pq2Lg6Nq6GxpXINjHYYsbdCsJf-L--L9F1htI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Herbaut, Rémy</creator><creator>Dervaux, Julien</creator><creator>Brunet, Philippe</creator><creator>Royon, Laurent</creator><creator>Limat, Laurent</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8487-5362</orcidid><orcidid>https://orcid.org/0000-0002-2458-144X</orcidid><orcidid>https://orcid.org/0000-0002-2878-4279</orcidid><orcidid>https://orcid.org/0000-0003-4619-1423</orcidid></search><sort><creationdate>20200901</creationdate><title>A criterion for the pinning and depinning of an advancing contact line on a cold substrate</title><author>Herbaut, Rémy ; Dervaux, Julien ; Brunet, Philippe ; Royon, Laurent ; Limat, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8d532eeeb5771b1bf1bcda9e2618b5c2adfaec30e437ec961c48d88d2202e88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Biological Physics</topic><topic>Capillary pressure</topic><topic>Challenges in Nanoscale Physics of Wetting Phenomena</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Contact pressure</topic><topic>Critical velocity</topic><topic>Exact solutions</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Mechanics</topic><topic>Melt temperature</topic><topic>Molecular</topic><topic>Nonlinear Sciences</topic><topic>Optical and Plasma Physics</topic><topic>Pattern Formation and Solitons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pinning</topic><topic>Regular Article</topic><topic>Soft Condensed Matter</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Supercooling</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbaut, Rémy</creatorcontrib><creatorcontrib>Dervaux, Julien</creatorcontrib><creatorcontrib>Brunet, Philippe</creatorcontrib><creatorcontrib>Royon, Laurent</creatorcontrib><creatorcontrib>Limat, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbaut, Rémy</au><au>Dervaux, Julien</au><au>Brunet, Philippe</au><au>Royon, Laurent</au><au>Limat, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A criterion for the pinning and depinning of an advancing contact line on a cold substrate</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>229</volume><issue>10</issue><spage>1867</spage><epage>1880</epage><pages>1867-1880</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>The influence of solidification on the spreading of liquids is addressed in the situation of an advancing liquid wedge on a cold substrate at T p &lt; T f , where T f is the melting temperature, and infinite thermal conductivity. We propose a model of contact-line dynamics derived from lubrication theory, where equilibrium between capillary pressure and viscous stress is at play. Here it is adapted to a quadruple line geometry, where vapour, liquid, frozen liquid and basal substrate meet. The Stefan thermal problem is solved in an intermediate region between molecular and mesoscopic scales, allowing to predict the shape of the solidified surface. The apparent contact angle versus advancing velocity U takes a minimal value, which is set as the transition from continuous advancing to pinning. We postulate that this transition corresponds to the experimentally observed critical velocity, dependent on undercooling temperature T f − T p , below which the liquid is pinned and advances with stick-slip dynamics. The analytical solution of the model shows a qualitatively fair agreement with experimental data, and the best agreement is obtained from the adjustment of a mesoscopic cut-off length as fitting parameter. We discuss of the dependence of this cut-off length on T p</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900261-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8487-5362</orcidid><orcidid>https://orcid.org/0000-0002-2458-144X</orcidid><orcidid>https://orcid.org/0000-0002-2878-4279</orcidid><orcidid>https://orcid.org/0000-0003-4619-1423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2020-09, Vol.229 (10), p.1867-1880
issn 1951-6355
1951-6401
language eng
recordid cdi_hal_primary_oai_HAL_hal_03051914v2
source SpringerLink Journals - AutoHoldings
subjects Atomic
Biological Physics
Capillary pressure
Challenges in Nanoscale Physics of Wetting Phenomena
Classical and Continuum Physics
Condensed Matter
Condensed Matter Physics
Contact angle
Contact pressure
Critical velocity
Exact solutions
Fluid Dynamics
Fluid mechanics
Materials Science
Measurement Science and Instrumentation
Mechanics
Melt temperature
Molecular
Nonlinear Sciences
Optical and Plasma Physics
Pattern Formation and Solitons
Physics
Physics and Astronomy
Pinning
Regular Article
Soft Condensed Matter
Solidification
Substrates
Supercooling
Temperature dependence
Thermal conductivity
title A criterion for the pinning and depinning of an advancing contact line on a cold substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20criterion%20for%20the%20pinning%20and%20depinning%20of%20an%20advancing%20contact%20line%20on%20a%20cold%20substrate&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Herbaut,%20R%C3%A9my&rft.date=2020-09-01&rft.volume=229&rft.issue=10&rft.spage=1867&rft.epage=1880&rft.pages=1867-1880&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900261-5&rft_dat=%3Cproquest_hal_p%3E2450301848%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450301848&rft_id=info:pmid/&rfr_iscdi=true