A closed max‐t test for multiple comparisons of areas under the ROC curve

Comparing areas under the ROC curve (AUCs) is a popular approach to compare prognostic biomarkers. The aim of this paper is to present an efficient method to control the family‐wise error rate when multiple comparisons are performed. We suggest to combine the max‐t test and the closed testing proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2022-03, Vol.78 (1), p.352-363
Hauptverfasser: Blanche, Paul, Dartigues, Jean‐François, Riou, Jérémie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 1
container_start_page 352
container_title Biometrics
container_volume 78
creator Blanche, Paul
Dartigues, Jean‐François
Riou, Jérémie
description Comparing areas under the ROC curve (AUCs) is a popular approach to compare prognostic biomarkers. The aim of this paper is to present an efficient method to control the family‐wise error rate when multiple comparisons are performed. We suggest to combine the max‐t test and the closed testing procedures. We build on previous work on asymptotic results for ROC curves and on general multiple testing methods to efficiently take into account both the correlations between the test statistics and the logical constraints between the null hypotheses. The proposed method results in an uniformly more powerful procedure than both the single‐step max‐t test procedure and popular stepwise extensions of the Bonferroni procedure, such as Bonferroni–Holm. As demonstrated in this paper, the method can be applied in most usual contexts, including the time‐dependent context with right censored data. We show how the method works in practice through a motivating example where we compare several psychometric scores to predict the t‐year risk of Alzheimer's disease. The example illustrates several multiple testing settings and demonstrates the advantage of using the proposed methods over common alternatives. R code has been made available to facilitate the use of the methods by others.
doi_str_mv 10.1111/biom.13401
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03051760v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645533757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3911-b128c9771fc71f8c86c5e686e1d81af1e8dd4e0231a6bb5522c605b17fd588a83</originalsourceid><addsrcrecordid>eNp90UFrFDEUB_Agit1WL34ACXixwtT3kkkme9wuaosrC6LgLWQyb-iUmc2azFR78yP4Gf0kZp3agwcDIST8-PNeHmPPEM4wr9d1F4YzlCXgA7ZAVWIBpYCHbAEAupAlfjlixyld5-tSgXjMjqQUUAHggr1fcd-HRA0f3PdfP36OfKQ08jZEPkz92O174j4Mexe7FHaJh5a7SC7xaddQ5OMV8Y_bNfdTvKEn7FHr-kRP784T9vntm0_ri2KzfXe5Xm0KL5eIRY3C-GVVYevzNt5or0gbTdgYdC2SaZqSQEh0uq6VEsJrUDVWbaOMcUaesNM598r1dh-7wcVbG1xnL1Ybe3gDCQorDTeY7cvZ7mP4OuXW7NAlT33vdhSmZEWpRYkopMr0xT_0OkxxlzuxQpdKSVmpKqtXs_IxpBSpva8AwR7GYQ_jsH_GkfHzu8ipHqi5p3__PwOcwbeup9v_RNnzy-2HOfQ3HMeSsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645533757</pqid></control><display><type>article</type><title>A closed max‐t test for multiple comparisons of areas under the ROC curve</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Oxford University Press</source><creator>Blanche, Paul ; Dartigues, Jean‐François ; Riou, Jérémie</creator><creatorcontrib>Blanche, Paul ; Dartigues, Jean‐François ; Riou, Jérémie</creatorcontrib><description>Comparing areas under the ROC curve (AUCs) is a popular approach to compare prognostic biomarkers. The aim of this paper is to present an efficient method to control the family‐wise error rate when multiple comparisons are performed. We suggest to combine the max‐t test and the closed testing procedures. We build on previous work on asymptotic results for ROC curves and on general multiple testing methods to efficiently take into account both the correlations between the test statistics and the logical constraints between the null hypotheses. The proposed method results in an uniformly more powerful procedure than both the single‐step max‐t test procedure and popular stepwise extensions of the Bonferroni procedure, such as Bonferroni–Holm. As demonstrated in this paper, the method can be applied in most usual contexts, including the time‐dependent context with right censored data. We show how the method works in practice through a motivating example where we compare several psychometric scores to predict the t‐year risk of Alzheimer's disease. The example illustrates several multiple testing settings and demonstrates the advantage of using the proposed methods over common alternatives. R code has been made available to facilitate the use of the methods by others.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13401</identifier><identifier>PMID: 33207001</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Alzheimer's disease ; Asymptotic methods ; biomarker ; Biomarkers ; closed testing ; Control methods ; Mathematics ; max‐t test ; Methodology ; multiple testing ; Neurodegenerative diseases ; Research Design ; ROC Curve ; Statistical tests ; Statistics ; Student's t-test ; survival analysis ; Test procedures</subject><ispartof>Biometrics, 2022-03, Vol.78 (1), p.352-363</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><rights>2022 The International Biometric Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3911-b128c9771fc71f8c86c5e686e1d81af1e8dd4e0231a6bb5522c605b17fd588a83</citedby><cites>FETCH-LOGICAL-c3911-b128c9771fc71f8c86c5e686e1d81af1e8dd4e0231a6bb5522c605b17fd588a83</cites><orcidid>0000-0003-1415-7976 ; 0000-0002-7056-9257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33207001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03051760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanche, Paul</creatorcontrib><creatorcontrib>Dartigues, Jean‐François</creatorcontrib><creatorcontrib>Riou, Jérémie</creatorcontrib><title>A closed max‐t test for multiple comparisons of areas under the ROC curve</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Comparing areas under the ROC curve (AUCs) is a popular approach to compare prognostic biomarkers. The aim of this paper is to present an efficient method to control the family‐wise error rate when multiple comparisons are performed. We suggest to combine the max‐t test and the closed testing procedures. We build on previous work on asymptotic results for ROC curves and on general multiple testing methods to efficiently take into account both the correlations between the test statistics and the logical constraints between the null hypotheses. The proposed method results in an uniformly more powerful procedure than both the single‐step max‐t test procedure and popular stepwise extensions of the Bonferroni procedure, such as Bonferroni–Holm. As demonstrated in this paper, the method can be applied in most usual contexts, including the time‐dependent context with right censored data. We show how the method works in practice through a motivating example where we compare several psychometric scores to predict the t‐year risk of Alzheimer's disease. The example illustrates several multiple testing settings and demonstrates the advantage of using the proposed methods over common alternatives. R code has been made available to facilitate the use of the methods by others.</description><subject>Alzheimer's disease</subject><subject>Asymptotic methods</subject><subject>biomarker</subject><subject>Biomarkers</subject><subject>closed testing</subject><subject>Control methods</subject><subject>Mathematics</subject><subject>max‐t test</subject><subject>Methodology</subject><subject>multiple testing</subject><subject>Neurodegenerative diseases</subject><subject>Research Design</subject><subject>ROC Curve</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Student's t-test</subject><subject>survival analysis</subject><subject>Test procedures</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UFrFDEUB_Agit1WL34ACXixwtT3kkkme9wuaosrC6LgLWQyb-iUmc2azFR78yP4Gf0kZp3agwcDIST8-PNeHmPPEM4wr9d1F4YzlCXgA7ZAVWIBpYCHbAEAupAlfjlixyld5-tSgXjMjqQUUAHggr1fcd-HRA0f3PdfP36OfKQ08jZEPkz92O174j4Mexe7FHaJh5a7SC7xaddQ5OMV8Y_bNfdTvKEn7FHr-kRP784T9vntm0_ri2KzfXe5Xm0KL5eIRY3C-GVVYevzNt5or0gbTdgYdC2SaZqSQEh0uq6VEsJrUDVWbaOMcUaesNM598r1dh-7wcVbG1xnL1Ybe3gDCQorDTeY7cvZ7mP4OuXW7NAlT33vdhSmZEWpRYkopMr0xT_0OkxxlzuxQpdKSVmpKqtXs_IxpBSpva8AwR7GYQ_jsH_GkfHzu8ipHqi5p3__PwOcwbeup9v_RNnzy-2HOfQ3HMeSsw</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Blanche, Paul</creator><creator>Dartigues, Jean‐François</creator><creator>Riou, Jérémie</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1415-7976</orcidid><orcidid>https://orcid.org/0000-0002-7056-9257</orcidid></search><sort><creationdate>202203</creationdate><title>A closed max‐t test for multiple comparisons of areas under the ROC curve</title><author>Blanche, Paul ; Dartigues, Jean‐François ; Riou, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3911-b128c9771fc71f8c86c5e686e1d81af1e8dd4e0231a6bb5522c605b17fd588a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alzheimer's disease</topic><topic>Asymptotic methods</topic><topic>biomarker</topic><topic>Biomarkers</topic><topic>closed testing</topic><topic>Control methods</topic><topic>Mathematics</topic><topic>max‐t test</topic><topic>Methodology</topic><topic>multiple testing</topic><topic>Neurodegenerative diseases</topic><topic>Research Design</topic><topic>ROC Curve</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Student's t-test</topic><topic>survival analysis</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanche, Paul</creatorcontrib><creatorcontrib>Dartigues, Jean‐François</creatorcontrib><creatorcontrib>Riou, Jérémie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanche, Paul</au><au>Dartigues, Jean‐François</au><au>Riou, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A closed max‐t test for multiple comparisons of areas under the ROC curve</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2022-03</date><risdate>2022</risdate><volume>78</volume><issue>1</issue><spage>352</spage><epage>363</epage><pages>352-363</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Comparing areas under the ROC curve (AUCs) is a popular approach to compare prognostic biomarkers. The aim of this paper is to present an efficient method to control the family‐wise error rate when multiple comparisons are performed. We suggest to combine the max‐t test and the closed testing procedures. We build on previous work on asymptotic results for ROC curves and on general multiple testing methods to efficiently take into account both the correlations between the test statistics and the logical constraints between the null hypotheses. The proposed method results in an uniformly more powerful procedure than both the single‐step max‐t test procedure and popular stepwise extensions of the Bonferroni procedure, such as Bonferroni–Holm. As demonstrated in this paper, the method can be applied in most usual contexts, including the time‐dependent context with right censored data. We show how the method works in practice through a motivating example where we compare several psychometric scores to predict the t‐year risk of Alzheimer's disease. The example illustrates several multiple testing settings and demonstrates the advantage of using the proposed methods over common alternatives. R code has been made available to facilitate the use of the methods by others.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33207001</pmid><doi>10.1111/biom.13401</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1415-7976</orcidid><orcidid>https://orcid.org/0000-0002-7056-9257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2022-03, Vol.78 (1), p.352-363
issn 0006-341X
1541-0420
language eng
recordid cdi_hal_primary_oai_HAL_hal_03051760v1
source Wiley-Blackwell Journals; MEDLINE; Oxford University Press
subjects Alzheimer's disease
Asymptotic methods
biomarker
Biomarkers
closed testing
Control methods
Mathematics
max‐t test
Methodology
multiple testing
Neurodegenerative diseases
Research Design
ROC Curve
Statistical tests
Statistics
Student's t-test
survival analysis
Test procedures
title A closed max‐t test for multiple comparisons of areas under the ROC curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20closed%20max%E2%80%90t%20test%20for%20multiple%20comparisons%20of%20areas%20under%20the%20ROC%20curve&rft.jtitle=Biometrics&rft.au=Blanche,%20Paul&rft.date=2022-03&rft.volume=78&rft.issue=1&rft.spage=352&rft.epage=363&rft.pages=352-363&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13401&rft_dat=%3Cproquest_hal_p%3E2645533757%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645533757&rft_id=info:pmid/33207001&rfr_iscdi=true