The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing

Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2012-04, Vol.117 (D7), p.n/a
Hauptverfasser: Fry, Meridith M., Naik, Vaishali, West, J. Jason, Schwarzkopf, M. Daniel, Fiore, Arlene M., Collins, William J., Dentener, Frank J., Shindell, Drew T., Atherton, Cyndi, Bergmann, Daniel, Duncan, Bryan N., Hess, Peter, MacKenzie, Ian A., Marmer, Elina, Schultz, Martin G., Szopa, Sophie, Wild, Oliver, Zeng, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D7
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 117
creator Fry, Meridith M.
Naik, Vaishali
West, J. Jason
Schwarzkopf, M. Daniel
Fiore, Arlene M.
Collins, William J.
Dentener, Frank J.
Shindell, Drew T.
Atherton, Cyndi
Bergmann, Daniel
Duncan, Bryan N.
Hess, Peter
MacKenzie, Ian A.
Marmer, Elina
Schultz, Martin G.
Szopa, Sophie
Wild, Oliver
Zeng, Guang
description Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source‐Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3responses, including long‐term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOxreductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100‐year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GW
doi_str_mv 10.1029/2011JD017134
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03048476v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024654410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5792-f534308c0898b11bc1c8358f15e6d63951edadf238dd8e1f517f466bb6e6cb9e3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRcKm98wcERFBwNCdfk7ksrd21rFVsxcuQzZx0U2cnazLbWvHHm3XLIl6IuQk5ed6Hc5Kqegr0NVDWvmEU4OyEQgNcPKgmDKSqGaPsYTWhIHRNGWseV4c5X9OyhFSCwqT6eblEEgbfb3BwSKIn8UcckKwTuk3KMRFchZxDHDLxKa6Ij5tEbmPqO5Lw6nc9DmRMcR3zeokpOOLiqhzCWC6JHQpnu2DHcIPE9WFlRyyS5MJw9aR65G2f8fB-P6g-n769PJ7V8w_Td8dH89rJpmW1l1xwqh3VrV4ALBw4zaX2IFF1ircSsLOdZ1x3nUbwEhovlFosFCq3aJEfVC933qXtzTqVHtKdiTaY2dHcbGuUU6FFo26gsC927DrFbxvMoynzO-x7O2DcZFPeurgZ5er_UCkE0II--wu9Lu84lKELRXWjJKOiUK92lEsx54R-3yzQra01f35ywZ_fS212tvfJDi7kfYbJtuGN3o7Ed9xt6PHun05zNv10AiXESqrepUIe8fs-ZdNXo4pXmi_nUwOzi48X4vy9OeW_AIvWw-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008765204</pqid></control><display><type>article</type><title>The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Fry, Meridith M. ; Naik, Vaishali ; West, J. Jason ; Schwarzkopf, M. Daniel ; Fiore, Arlene M. ; Collins, William J. ; Dentener, Frank J. ; Shindell, Drew T. ; Atherton, Cyndi ; Bergmann, Daniel ; Duncan, Bryan N. ; Hess, Peter ; MacKenzie, Ian A. ; Marmer, Elina ; Schultz, Martin G. ; Szopa, Sophie ; Wild, Oliver ; Zeng, Guang</creator><creatorcontrib>Fry, Meridith M. ; Naik, Vaishali ; West, J. Jason ; Schwarzkopf, M. Daniel ; Fiore, Arlene M. ; Collins, William J. ; Dentener, Frank J. ; Shindell, Drew T. ; Atherton, Cyndi ; Bergmann, Daniel ; Duncan, Bryan N. ; Hess, Peter ; MacKenzie, Ian A. ; Marmer, Elina ; Schultz, Martin G. ; Szopa, Sophie ; Wild, Oliver ; Zeng, Guang</creatorcontrib><description>Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source‐Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3responses, including long‐term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOxreductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100‐year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions. Key Points Radiative forcing of ozone precursor depends on location of emissions CH4, CO, and NMVOC reductions reduce climate forcing better than NOx reductions Regionally specific forcings support ozone precursors in climate policy</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD017134</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Air pollution ; Air quality ; Anthropogenic factors ; Atmospheric sciences ; Carbon dioxide ; carbon monoxide ; Chemical transport ; Climate change ; Continental interfaces, environment ; Earth sciences ; Earth, ocean, space ; Emissions ; Exact sciences and technology ; Geophysics ; Global climate ; Global warming ; Greenhouse gases ; Methane ; Ocean, Atmosphere ; Oxidizing agents ; Ozone ; Pollution dispersion ; Pollution sources ; Radiation ; Radiative transfer ; Sciences of the Universe ; sulfate ; Troposphere ; tropospheric chemistry ; Water vapor</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2012-04, Vol.117 (D7), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5792-f534308c0898b11bc1c8358f15e6d63951edadf238dd8e1f517f466bb6e6cb9e3</citedby><cites>FETCH-LOGICAL-c5792-f534308c0898b11bc1c8358f15e6d63951edadf238dd8e1f517f466bb6e6cb9e3</cites><orcidid>0000-0001-5652-4987 ; 0000-0001-7556-3076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD017134$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD017134$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,11521,27931,27932,45581,45582,46416,46475,46840,46899</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25973781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03048476$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fry, Meridith M.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>West, J. Jason</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Fiore, Arlene M.</creatorcontrib><creatorcontrib>Collins, William J.</creatorcontrib><creatorcontrib>Dentener, Frank J.</creatorcontrib><creatorcontrib>Shindell, Drew T.</creatorcontrib><creatorcontrib>Atherton, Cyndi</creatorcontrib><creatorcontrib>Bergmann, Daniel</creatorcontrib><creatorcontrib>Duncan, Bryan N.</creatorcontrib><creatorcontrib>Hess, Peter</creatorcontrib><creatorcontrib>MacKenzie, Ian A.</creatorcontrib><creatorcontrib>Marmer, Elina</creatorcontrib><creatorcontrib>Schultz, Martin G.</creatorcontrib><creatorcontrib>Szopa, Sophie</creatorcontrib><creatorcontrib>Wild, Oliver</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><title>The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source‐Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3responses, including long‐term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOxreductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100‐year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions. Key Points Radiative forcing of ozone precursor depends on location of emissions CH4, CO, and NMVOC reductions reduce climate forcing better than NOx reductions Regionally specific forcings support ozone precursors in climate policy</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Anthropogenic factors</subject><subject>Atmospheric sciences</subject><subject>Carbon dioxide</subject><subject>carbon monoxide</subject><subject>Chemical transport</subject><subject>Climate change</subject><subject>Continental interfaces, environment</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Emissions</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Greenhouse gases</subject><subject>Methane</subject><subject>Ocean, Atmosphere</subject><subject>Oxidizing agents</subject><subject>Ozone</subject><subject>Pollution dispersion</subject><subject>Pollution sources</subject><subject>Radiation</subject><subject>Radiative transfer</subject><subject>Sciences of the Universe</subject><subject>sulfate</subject><subject>Troposphere</subject><subject>tropospheric chemistry</subject><subject>Water vapor</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkV1rFDEUhgdRcKm98wcERFBwNCdfk7ksrd21rFVsxcuQzZx0U2cnazLbWvHHm3XLIl6IuQk5ed6Hc5Kqegr0NVDWvmEU4OyEQgNcPKgmDKSqGaPsYTWhIHRNGWseV4c5X9OyhFSCwqT6eblEEgbfb3BwSKIn8UcckKwTuk3KMRFchZxDHDLxKa6Ij5tEbmPqO5Lw6nc9DmRMcR3zeokpOOLiqhzCWC6JHQpnu2DHcIPE9WFlRyyS5MJw9aR65G2f8fB-P6g-n769PJ7V8w_Td8dH89rJpmW1l1xwqh3VrV4ALBw4zaX2IFF1ircSsLOdZ1x3nUbwEhovlFosFCq3aJEfVC933qXtzTqVHtKdiTaY2dHcbGuUU6FFo26gsC927DrFbxvMoynzO-x7O2DcZFPeurgZ5er_UCkE0II--wu9Lu84lKELRXWjJKOiUK92lEsx54R-3yzQra01f35ywZ_fS212tvfJDi7kfYbJtuGN3o7Ed9xt6PHun05zNv10AiXESqrepUIe8fs-ZdNXo4pXmi_nUwOzi48X4vy9OeW_AIvWw-8</recordid><startdate>20120416</startdate><enddate>20120416</enddate><creator>Fry, Meridith M.</creator><creator>Naik, Vaishali</creator><creator>West, J. Jason</creator><creator>Schwarzkopf, M. Daniel</creator><creator>Fiore, Arlene M.</creator><creator>Collins, William J.</creator><creator>Dentener, Frank J.</creator><creator>Shindell, Drew T.</creator><creator>Atherton, Cyndi</creator><creator>Bergmann, Daniel</creator><creator>Duncan, Bryan N.</creator><creator>Hess, Peter</creator><creator>MacKenzie, Ian A.</creator><creator>Marmer, Elina</creator><creator>Schultz, Martin G.</creator><creator>Szopa, Sophie</creator><creator>Wild, Oliver</creator><creator>Zeng, Guang</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5652-4987</orcidid><orcidid>https://orcid.org/0000-0001-7556-3076</orcidid></search><sort><creationdate>20120416</creationdate><title>The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing</title><author>Fry, Meridith M. ; Naik, Vaishali ; West, J. Jason ; Schwarzkopf, M. Daniel ; Fiore, Arlene M. ; Collins, William J. ; Dentener, Frank J. ; Shindell, Drew T. ; Atherton, Cyndi ; Bergmann, Daniel ; Duncan, Bryan N. ; Hess, Peter ; MacKenzie, Ian A. ; Marmer, Elina ; Schultz, Martin G. ; Szopa, Sophie ; Wild, Oliver ; Zeng, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5792-f534308c0898b11bc1c8358f15e6d63951edadf238dd8e1f517f466bb6e6cb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Anthropogenic factors</topic><topic>Atmospheric sciences</topic><topic>Carbon dioxide</topic><topic>carbon monoxide</topic><topic>Chemical transport</topic><topic>Climate change</topic><topic>Continental interfaces, environment</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Emissions</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Greenhouse gases</topic><topic>Methane</topic><topic>Ocean, Atmosphere</topic><topic>Oxidizing agents</topic><topic>Ozone</topic><topic>Pollution dispersion</topic><topic>Pollution sources</topic><topic>Radiation</topic><topic>Radiative transfer</topic><topic>Sciences of the Universe</topic><topic>sulfate</topic><topic>Troposphere</topic><topic>tropospheric chemistry</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fry, Meridith M.</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>West, J. Jason</creatorcontrib><creatorcontrib>Schwarzkopf, M. Daniel</creatorcontrib><creatorcontrib>Fiore, Arlene M.</creatorcontrib><creatorcontrib>Collins, William J.</creatorcontrib><creatorcontrib>Dentener, Frank J.</creatorcontrib><creatorcontrib>Shindell, Drew T.</creatorcontrib><creatorcontrib>Atherton, Cyndi</creatorcontrib><creatorcontrib>Bergmann, Daniel</creatorcontrib><creatorcontrib>Duncan, Bryan N.</creatorcontrib><creatorcontrib>Hess, Peter</creatorcontrib><creatorcontrib>MacKenzie, Ian A.</creatorcontrib><creatorcontrib>Marmer, Elina</creatorcontrib><creatorcontrib>Schultz, Martin G.</creatorcontrib><creatorcontrib>Szopa, Sophie</creatorcontrib><creatorcontrib>Wild, Oliver</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fry, Meridith M.</au><au>Naik, Vaishali</au><au>West, J. Jason</au><au>Schwarzkopf, M. Daniel</au><au>Fiore, Arlene M.</au><au>Collins, William J.</au><au>Dentener, Frank J.</au><au>Shindell, Drew T.</au><au>Atherton, Cyndi</au><au>Bergmann, Daniel</au><au>Duncan, Bryan N.</au><au>Hess, Peter</au><au>MacKenzie, Ian A.</au><au>Marmer, Elina</au><au>Schultz, Martin G.</au><au>Szopa, Sophie</au><au>Wild, Oliver</au><au>Zeng, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-04-16</date><risdate>2012</risdate><volume>117</volume><issue>D7</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source‐Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3responses, including long‐term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOxreductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100‐year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions. Key Points Radiative forcing of ozone precursor depends on location of emissions CH4, CO, and NMVOC reductions reduce climate forcing better than NOx reductions Regionally specific forcings support ozone precursors in climate policy</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD017134</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5652-4987</orcidid><orcidid>https://orcid.org/0000-0001-7556-3076</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2012-04, Vol.117 (D7), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_03048476v1
source Wiley Online Library - AutoHoldings Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Aerosols
Air pollution
Air quality
Anthropogenic factors
Atmospheric sciences
Carbon dioxide
carbon monoxide
Chemical transport
Climate change
Continental interfaces, environment
Earth sciences
Earth, ocean, space
Emissions
Exact sciences and technology
Geophysics
Global climate
Global warming
Greenhouse gases
Methane
Ocean, Atmosphere
Oxidizing agents
Ozone
Pollution dispersion
Pollution sources
Radiation
Radiative transfer
Sciences of the Universe
sulfate
Troposphere
tropospheric chemistry
Water vapor
title The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20ozone%20precursor%20emissions%20from%20four%20world%20regions%20on%20tropospheric%20composition%20and%20radiative%20climate%20forcing&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Fry,%20Meridith%20M.&rft.date=2012-04-16&rft.volume=117&rft.issue=D7&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD017134&rft_dat=%3Cproquest_hal_p%3E1024654410%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008765204&rft_id=info:pmid/&rfr_iscdi=true