Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide

Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of porous materials 2020-12, Vol.27 (6), p.1823-1835
Hauptverfasser: Couzon, Nelly, Bois, Laurence, Fellah, Clémentine, Loestean, Cristian, Chassagneux, Fernand, Chiriac, Rodica, Toche, François, Khrouz, Lhoussain, Brioude, Arnaud, Ersen, Ovidiu, Roiban, Lucian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1835
container_issue 6
container_start_page 1823
container_title Journal of porous materials
container_volume 27
creator Couzon, Nelly
Bois, Laurence
Fellah, Clémentine
Loestean, Cristian
Chassagneux, Fernand
Chiriac, Rodica
Toche, François
Khrouz, Lhoussain
Brioude, Arnaud
Ersen, Ovidiu
Roiban, Lucian
description Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, analytical electronic tomography, nitrogen adsorption/desorption isotherms, thermogravimetric analysis, X-ray photoelectron spectroscopy and electronic paramagnetic resonance. Electronic tomography analysis reveals that a mesoporous solid solution MnZr was successfully obtained by this way, with a homogeneous dispersion of Mn. X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis and electronic paramagnetic resonance inform about the manganese oxidation states present (Mn 2+ , Mn 3+ , Mn 4+ ) and their location within the sample.
doi_str_mv 10.1007/s10934-020-00962-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03047301v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450419717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ade0c3b2fdeb60bbb3684385fae392d7de03f47af86d72da3b42d31adc0e25c73</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyRmBgM1z-Jk7GqgCIVMQCz5SRO65LawU4Q8PS4DYKNyda95zu6-hA6J3BFAMR1IFAwjoECBigyitMDNCGpYJjnKT-Mf5YDppTyY3QSwgYilQsxQU8Pyq6U1UEn7sPUqjfOJqFXvQ6J153yvdmPjE1UUq2VtbrFrXnVyVYH1znvhpB8GV85a4bt3qFP0VGj2qDPft4perm9eZ4v8PLx7n4-W-KK5WmPVa2hYiVtal1mUJYly3IeN43SrKC1iGvWcKGaPKsFrRUrOa0ZUXUFmqaVYFN0OXrXqpWdN1vlP6VTRi5mS7mbAQMuGJB3EtmLke28ext06OXGDd7G8yTlKXBSCLIz0pGqvAvB6-ZXS0DuipZj0TIWLfdFyzSG2BgKEbYr7f_U_6S-AQYKgbM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450419717</pqid></control><display><type>article</type><title>Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Couzon, Nelly ; Bois, Laurence ; Fellah, Clémentine ; Loestean, Cristian ; Chassagneux, Fernand ; Chiriac, Rodica ; Toche, François ; Khrouz, Lhoussain ; Brioude, Arnaud ; Ersen, Ovidiu ; Roiban, Lucian</creator><creatorcontrib>Couzon, Nelly ; Bois, Laurence ; Fellah, Clémentine ; Loestean, Cristian ; Chassagneux, Fernand ; Chiriac, Rodica ; Toche, François ; Khrouz, Lhoussain ; Brioude, Arnaud ; Ersen, Ovidiu ; Roiban, Lucian</creatorcontrib><description>Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, analytical electronic tomography, nitrogen adsorption/desorption isotherms, thermogravimetric analysis, X-ray photoelectron spectroscopy and electronic paramagnetic resonance. Electronic tomography analysis reveals that a mesoporous solid solution MnZr was successfully obtained by this way, with a homogeneous dispersion of Mn. X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis and electronic paramagnetic resonance inform about the manganese oxidation states present (Mn 2+ , Mn 3+ , Mn 4+ ) and their location within the sample.</description><identifier>ISSN: 1380-2224</identifier><identifier>EISSN: 1573-4854</identifier><identifier>DOI: 10.1007/s10934-020-00962-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Block copolymers ; Catalysis ; Characterization and Evaluation of Materials ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Ions ; Manganese ; Material chemistry ; Oxidation ; Paramagnetic resonance ; Photoelectron spectroscopy ; Photoelectrons ; Physical Chemistry ; Self-assembly ; Solid solutions ; Spectroscopic analysis ; Spectrum analysis ; Thermal analysis ; Thermogravimetric analysis ; Tomography ; X ray photoelectron spectroscopy ; X-ray diffraction ; Zirconium oxides</subject><ispartof>Journal of porous materials, 2020-12, Vol.27 (6), p.1823-1835</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c385t-ade0c3b2fdeb60bbb3684385fae392d7de03f47af86d72da3b42d31adc0e25c73</cites><orcidid>0000-0002-2477-5551 ; 0000-0002-8698-114X ; 0000-0003-3149-531X ; 0000-0003-1989-7367 ; 0000-0002-8036-3973 ; 0000-0002-1553-0915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10934-020-00962-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10934-020-00962-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03047301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couzon, Nelly</creatorcontrib><creatorcontrib>Bois, Laurence</creatorcontrib><creatorcontrib>Fellah, Clémentine</creatorcontrib><creatorcontrib>Loestean, Cristian</creatorcontrib><creatorcontrib>Chassagneux, Fernand</creatorcontrib><creatorcontrib>Chiriac, Rodica</creatorcontrib><creatorcontrib>Toche, François</creatorcontrib><creatorcontrib>Khrouz, Lhoussain</creatorcontrib><creatorcontrib>Brioude, Arnaud</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Roiban, Lucian</creatorcontrib><title>Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide</title><title>Journal of porous materials</title><addtitle>J Porous Mater</addtitle><description>Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, analytical electronic tomography, nitrogen adsorption/desorption isotherms, thermogravimetric analysis, X-ray photoelectron spectroscopy and electronic paramagnetic resonance. Electronic tomography analysis reveals that a mesoporous solid solution MnZr was successfully obtained by this way, with a homogeneous dispersion of Mn. X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis and electronic paramagnetic resonance inform about the manganese oxidation states present (Mn 2+ , Mn 3+ , Mn 4+ ) and their location within the sample.</description><subject>Block copolymers</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ions</subject><subject>Manganese</subject><subject>Material chemistry</subject><subject>Oxidation</subject><subject>Paramagnetic resonance</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Self-assembly</subject><subject>Solid solutions</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Thermal analysis</subject><subject>Thermogravimetric analysis</subject><subject>Tomography</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zirconium oxides</subject><issn>1380-2224</issn><issn>1573-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyRmBgM1z-Jk7GqgCIVMQCz5SRO65LawU4Q8PS4DYKNyda95zu6-hA6J3BFAMR1IFAwjoECBigyitMDNCGpYJjnKT-Mf5YDppTyY3QSwgYilQsxQU8Pyq6U1UEn7sPUqjfOJqFXvQ6J153yvdmPjE1UUq2VtbrFrXnVyVYH1znvhpB8GV85a4bt3qFP0VGj2qDPft4perm9eZ4v8PLx7n4-W-KK5WmPVa2hYiVtal1mUJYly3IeN43SrKC1iGvWcKGaPKsFrRUrOa0ZUXUFmqaVYFN0OXrXqpWdN1vlP6VTRi5mS7mbAQMuGJB3EtmLke28ext06OXGDd7G8yTlKXBSCLIz0pGqvAvB6-ZXS0DuipZj0TIWLfdFyzSG2BgKEbYr7f_U_6S-AQYKgbM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Couzon, Nelly</creator><creator>Bois, Laurence</creator><creator>Fellah, Clémentine</creator><creator>Loestean, Cristian</creator><creator>Chassagneux, Fernand</creator><creator>Chiriac, Rodica</creator><creator>Toche, François</creator><creator>Khrouz, Lhoussain</creator><creator>Brioude, Arnaud</creator><creator>Ersen, Ovidiu</creator><creator>Roiban, Lucian</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2477-5551</orcidid><orcidid>https://orcid.org/0000-0002-8698-114X</orcidid><orcidid>https://orcid.org/0000-0003-3149-531X</orcidid><orcidid>https://orcid.org/0000-0003-1989-7367</orcidid><orcidid>https://orcid.org/0000-0002-8036-3973</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid></search><sort><creationdate>20201201</creationdate><title>Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide</title><author>Couzon, Nelly ; Bois, Laurence ; Fellah, Clémentine ; Loestean, Cristian ; Chassagneux, Fernand ; Chiriac, Rodica ; Toche, François ; Khrouz, Lhoussain ; Brioude, Arnaud ; Ersen, Ovidiu ; Roiban, Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ade0c3b2fdeb60bbb3684385fae392d7de03f47af86d72da3b42d31adc0e25c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Block copolymers</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ions</topic><topic>Manganese</topic><topic>Material chemistry</topic><topic>Oxidation</topic><topic>Paramagnetic resonance</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Self-assembly</topic><topic>Solid solutions</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Thermal analysis</topic><topic>Thermogravimetric analysis</topic><topic>Tomography</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couzon, Nelly</creatorcontrib><creatorcontrib>Bois, Laurence</creatorcontrib><creatorcontrib>Fellah, Clémentine</creatorcontrib><creatorcontrib>Loestean, Cristian</creatorcontrib><creatorcontrib>Chassagneux, Fernand</creatorcontrib><creatorcontrib>Chiriac, Rodica</creatorcontrib><creatorcontrib>Toche, François</creatorcontrib><creatorcontrib>Khrouz, Lhoussain</creatorcontrib><creatorcontrib>Brioude, Arnaud</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Roiban, Lucian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of porous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couzon, Nelly</au><au>Bois, Laurence</au><au>Fellah, Clémentine</au><au>Loestean, Cristian</au><au>Chassagneux, Fernand</au><au>Chiriac, Rodica</au><au>Toche, François</au><au>Khrouz, Lhoussain</au><au>Brioude, Arnaud</au><au>Ersen, Ovidiu</au><au>Roiban, Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide</atitle><jtitle>Journal of porous materials</jtitle><stitle>J Porous Mater</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>1823</spage><epage>1835</epage><pages>1823-1835</pages><issn>1380-2224</issn><eissn>1573-4854</eissn><abstract>Here, we present a characterization of mesoporous mixed manganese zirconium oxide (MnZr) synthesized by evaporation induced self-assembly method involving a block copolymer self-assembly method. The MnZr oxide has been fully characterized by X-ray diffraction, transmission electronic microscopy, analytical electronic tomography, nitrogen adsorption/desorption isotherms, thermogravimetric analysis, X-ray photoelectron spectroscopy and electronic paramagnetic resonance. Electronic tomography analysis reveals that a mesoporous solid solution MnZr was successfully obtained by this way, with a homogeneous dispersion of Mn. X-ray diffraction, X-ray photoelectron spectroscopy, thermal analysis and electronic paramagnetic resonance inform about the manganese oxidation states present (Mn 2+ , Mn 3+ , Mn 4+ ) and their location within the sample.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10934-020-00962-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2477-5551</orcidid><orcidid>https://orcid.org/0000-0002-8698-114X</orcidid><orcidid>https://orcid.org/0000-0003-3149-531X</orcidid><orcidid>https://orcid.org/0000-0003-1989-7367</orcidid><orcidid>https://orcid.org/0000-0002-8036-3973</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-2224
ispartof Journal of porous materials, 2020-12, Vol.27 (6), p.1823-1835
issn 1380-2224
1573-4854
language eng
recordid cdi_hal_primary_oai_HAL_hal_03047301v1
source SpringerLink Journals - AutoHoldings
subjects Block copolymers
Catalysis
Characterization and Evaluation of Materials
Chemical Sciences
Chemistry
Chemistry and Materials Science
Ions
Manganese
Material chemistry
Oxidation
Paramagnetic resonance
Photoelectron spectroscopy
Photoelectrons
Physical Chemistry
Self-assembly
Solid solutions
Spectroscopic analysis
Spectrum analysis
Thermal analysis
Thermogravimetric analysis
Tomography
X ray photoelectron spectroscopy
X-ray diffraction
Zirconium oxides
title Manganese oxidation states repartition in a channel-like mesoporous zirconium oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manganese%20oxidation%20states%20repartition%20in%20a%20channel-like%20mesoporous%20zirconium%20oxide&rft.jtitle=Journal%20of%20porous%20materials&rft.au=Couzon,%20Nelly&rft.date=2020-12-01&rft.volume=27&rft.issue=6&rft.spage=1823&rft.epage=1835&rft.pages=1823-1835&rft.issn=1380-2224&rft.eissn=1573-4854&rft_id=info:doi/10.1007/s10934-020-00962-5&rft_dat=%3Cproquest_hal_p%3E2450419717%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450419717&rft_id=info:pmid/&rfr_iscdi=true