Complexity of deciding whether a tropical linear prevariety is a tropical variety
We give an algorithm, with a singly exponential complexity, deciding whether a tropical linear prevariety is a tropical linear variety . The algorithm relies on a criterion to be a tropical linear variety in terms of a duality between the tropical orthogonalization A ⊥ and the double tropical orthog...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 2021-03, Vol.32 (2), p.157-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Applicable algebra in engineering, communication and computing |
container_volume | 32 |
creator | Grigoriev, Dima Vorobjov, Nicolai |
description | We give an algorithm, with a singly exponential complexity, deciding whether a tropical linear
prevariety
is a tropical linear
variety
. The algorithm relies on a criterion to be a tropical linear variety in terms of a duality between the tropical orthogonalization
A
⊥
and the double tropical orthogonalization
A
⊥
⊥
of a subset
A
of the vector space
(
R
∪
{
∞
}
)
n
. We also give an example of a countable family of tropical hyperplanes such that their intersection is not a tropical prevariety. |
doi_str_mv | 10.1007/s00200-019-00407-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03047290v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490225348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-21860ff5b4746cb46e61a52e512bdc8ccc01ce033b7cdddc45be38c9caf5a4e13</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeAJw-rsx_JJsdS1AoFEfS8bDaTdkuaxN20tf_e1BT15Glg5nlfhoeQawZ3DEDdBwAOQIFlFECCorsTMmJScAoJ56dkBJlIKeMqOycXIawAIMmkGpHXabNuK_x03T5qyqhA6wpXL6LdErsl-shEnW9aZ00VVa5G46PW49Z4h33Ahb_34_aSnJWmCnh1nGPy_vjwNp3R-cvT83Qyp1ZkqqOcpQmUZZxLJRObywQTZmKOMeN5YVNrLTCLIESubFEUVsY5itRm1pSxkcjEmNwOvUtT6da7tfF73RinZ5O5PuxAgFQ8g-2BvRnY1jcfGwydXjUbX_fvaS4z4DwWMu0pPlDWNyF4LH9qGeiDZj1o1r1m_a1Z7_qQGEKhh-sF-t_qf1JfMnKA3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490225348</pqid></control><display><type>article</type><title>Complexity of deciding whether a tropical linear prevariety is a tropical variety</title><source>SpringerLink Journals</source><creator>Grigoriev, Dima ; Vorobjov, Nicolai</creator><creatorcontrib>Grigoriev, Dima ; Vorobjov, Nicolai</creatorcontrib><description>We give an algorithm, with a singly exponential complexity, deciding whether a tropical linear
prevariety
is a tropical linear
variety
. The algorithm relies on a criterion to be a tropical linear variety in terms of a duality between the tropical orthogonalization
A
⊥
and the double tropical orthogonalization
A
⊥
⊥
of a subset
A
of the vector space
(
R
∪
{
∞
}
)
n
. We also give an example of a countable family of tropical hyperplanes such that their intersection is not a tropical prevariety.</description><identifier>ISSN: 0938-1279</identifier><identifier>EISSN: 1432-0622</identifier><identifier>DOI: 10.1007/s00200-019-00407-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Complexity ; Computer Hardware ; Computer Science ; Hyperplanes ; Mathematics ; Original Paper ; Symbolic and Algebraic Manipulation ; Theory of Computation</subject><ispartof>Applicable algebra in engineering, communication and computing, 2021-03, Vol.32 (2), p.157-174</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-21860ff5b4746cb46e61a52e512bdc8ccc01ce033b7cdddc45be38c9caf5a4e13</citedby><cites>FETCH-LOGICAL-c397t-21860ff5b4746cb46e61a52e512bdc8ccc01ce033b7cdddc45be38c9caf5a4e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00200-019-00407-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00200-019-00407-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03047290$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoriev, Dima</creatorcontrib><creatorcontrib>Vorobjov, Nicolai</creatorcontrib><title>Complexity of deciding whether a tropical linear prevariety is a tropical variety</title><title>Applicable algebra in engineering, communication and computing</title><addtitle>AAECC</addtitle><description>We give an algorithm, with a singly exponential complexity, deciding whether a tropical linear
prevariety
is a tropical linear
variety
. The algorithm relies on a criterion to be a tropical linear variety in terms of a duality between the tropical orthogonalization
A
⊥
and the double tropical orthogonalization
A
⊥
⊥
of a subset
A
of the vector space
(
R
∪
{
∞
}
)
n
. We also give an example of a countable family of tropical hyperplanes such that their intersection is not a tropical prevariety.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Hyperplanes</subject><subject>Mathematics</subject><subject>Original Paper</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theory of Computation</subject><issn>0938-1279</issn><issn>1432-0622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeAJw-rsx_JJsdS1AoFEfS8bDaTdkuaxN20tf_e1BT15Glg5nlfhoeQawZ3DEDdBwAOQIFlFECCorsTMmJScAoJ56dkBJlIKeMqOycXIawAIMmkGpHXabNuK_x03T5qyqhA6wpXL6LdErsl-shEnW9aZ00VVa5G46PW49Z4h33Ahb_34_aSnJWmCnh1nGPy_vjwNp3R-cvT83Qyp1ZkqqOcpQmUZZxLJRObywQTZmKOMeN5YVNrLTCLIESubFEUVsY5itRm1pSxkcjEmNwOvUtT6da7tfF73RinZ5O5PuxAgFQ8g-2BvRnY1jcfGwydXjUbX_fvaS4z4DwWMu0pPlDWNyF4LH9qGeiDZj1o1r1m_a1Z7_qQGEKhh-sF-t_qf1JfMnKA3A</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Grigoriev, Dima</creator><creator>Vorobjov, Nicolai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20210301</creationdate><title>Complexity of deciding whether a tropical linear prevariety is a tropical variety</title><author>Grigoriev, Dima ; Vorobjov, Nicolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-21860ff5b4746cb46e61a52e512bdc8ccc01ce033b7cdddc45be38c9caf5a4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Hyperplanes</topic><topic>Mathematics</topic><topic>Original Paper</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoriev, Dima</creatorcontrib><creatorcontrib>Vorobjov, Nicolai</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applicable algebra in engineering, communication and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoriev, Dima</au><au>Vorobjov, Nicolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of deciding whether a tropical linear prevariety is a tropical variety</atitle><jtitle>Applicable algebra in engineering, communication and computing</jtitle><stitle>AAECC</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>2</issue><spage>157</spage><epage>174</epage><pages>157-174</pages><issn>0938-1279</issn><eissn>1432-0622</eissn><abstract>We give an algorithm, with a singly exponential complexity, deciding whether a tropical linear
prevariety
is a tropical linear
variety
. The algorithm relies on a criterion to be a tropical linear variety in terms of a duality between the tropical orthogonalization
A
⊥
and the double tropical orthogonalization
A
⊥
⊥
of a subset
A
of the vector space
(
R
∪
{
∞
}
)
n
. We also give an example of a countable family of tropical hyperplanes such that their intersection is not a tropical prevariety.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00200-019-00407-w</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1279 |
ispartof | Applicable algebra in engineering, communication and computing, 2021-03, Vol.32 (2), p.157-174 |
issn | 0938-1279 1432-0622 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03047290v1 |
source | SpringerLink Journals |
subjects | Algorithms Artificial Intelligence Complexity Computer Hardware Computer Science Hyperplanes Mathematics Original Paper Symbolic and Algebraic Manipulation Theory of Computation |
title | Complexity of deciding whether a tropical linear prevariety is a tropical variety |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20deciding%20whether%20a%20tropical%20linear%20prevariety%20is%20a%20tropical%20variety&rft.jtitle=Applicable%20algebra%20in%20engineering,%20communication%20and%20computing&rft.au=Grigoriev,%20Dima&rft.date=2021-03-01&rft.volume=32&rft.issue=2&rft.spage=157&rft.epage=174&rft.pages=157-174&rft.issn=0938-1279&rft.eissn=1432-0622&rft_id=info:doi/10.1007/s00200-019-00407-w&rft_dat=%3Cproquest_hal_p%3E2490225348%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490225348&rft_id=info:pmid/&rfr_iscdi=true |