Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors

Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased confo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2020-05, Vol.1113, p.26-35
Hauptverfasser: Lecas, Lucile, Hartmann, Lucie, Caro, Lydia, Mohamed-Bouteben, Sarah, Raingeval, Claire, Krimm, Isabelle, Wagner, Renaud, Dugas, Vincent, Demesmay, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 26
container_title Analytica chimica acta
container_volume 1113
creator Lecas, Lucile
Hartmann, Lucie
Caro, Lydia
Mohamed-Bouteben, Sarah
Raingeval, Claire
Krimm, Isabelle
Wagner, Renaud
Dugas, Vincent
Demesmay, Claire
description Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 μg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR. [Display omitted] •Nanodiscs-embedded AA2AR were immobilized onto monolithic nano-columns.•Streptavidin-biotin immobilization ensures low protein consumption (∼1 μg/column).•Frontal affinity chromatography was used to identify ligand/receptor interaction.•Weak affinity interactions (low to high μM range) can be detected/quantified.•6 fragments (low affinity ligands) were identified.
doi_str_mv 10.1016/j.aca.2020.03.062
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03045118v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267020303895</els_id><sourcerecordid>oai_HAL_hal_03045118v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ba56cb313ae92a67d07c91c777bdc56a093a71b4e2241454ca64bf276e6d61223</originalsourceid><addsrcrecordid>eNp9kE1vEzEURS0EoqHwA9ggb1nM8PwRuxGrqoK2UhAbWFtv7DeNQzIe2U5R-PU4CnTZlfWu7rmSD2PvBfQChPm07dFjL0FCD6oHI1-whbiyqtNK6pdsAQCqk8bCBXtTyradUoB-zS6UVBqMMQt2-BaniPWQ4x8K_DfhL47j2LJ65H6T0x5resg4b458TJnv4gNOgcdAU41j9Fhjmnga-YRTCrH40tF-oBDa2G0351QpTtynw7xrSSZPc025vGWvRtwVevfvvWQ_v375cXPXrb_f3t9crzuvFdRuwKXxgxIKaSXR2ADWr4S31g7BLw3CSqEVgyYptdBL7dHoYZTWkAlGSKku2cfz7gZ3bs5xj_noEkZ3d712pwwU6KUQV4-idcW563MqJdP4BAhwJ91u65pud9LdONd0N-bDmZkPw57CE_Hfbyt8Pheo_fIxUnbFR5o8hdhkVBdSfGb-L1qgkYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors</title><source>Elsevier ScienceDirect Journals</source><creator>Lecas, Lucile ; Hartmann, Lucie ; Caro, Lydia ; Mohamed-Bouteben, Sarah ; Raingeval, Claire ; Krimm, Isabelle ; Wagner, Renaud ; Dugas, Vincent ; Demesmay, Claire</creator><contributor>Demesmay, Claire</contributor><creatorcontrib>Lecas, Lucile ; Hartmann, Lucie ; Caro, Lydia ; Mohamed-Bouteben, Sarah ; Raingeval, Claire ; Krimm, Isabelle ; Wagner, Renaud ; Dugas, Vincent ; Demesmay, Claire ; Demesmay, Claire</creatorcontrib><description>Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 μg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR. [Display omitted] •Nanodiscs-embedded AA2AR were immobilized onto monolithic nano-columns.•Streptavidin-biotin immobilization ensures low protein consumption (∼1 μg/column).•Frontal affinity chromatography was used to identify ligand/receptor interaction.•Weak affinity interactions (low to high μM range) can be detected/quantified.•6 fragments (low affinity ligands) were identified.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2020.03.062</identifier><identifier>PMID: 32340666</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytical chemistry ; Biochemistry, Molecular Biology ; Chemical Sciences ; Life Sciences ; Medicinal Chemistry ; Membrane protein ; Miniaturization ; Nanodisc ; Organic chemistry ; Protein-ligand interaction ; Structural Biology ; Weak affinity chromatography</subject><ispartof>Analytica chimica acta, 2020-05, Vol.1113, p.26-35</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ba56cb313ae92a67d07c91c777bdc56a093a71b4e2241454ca64bf276e6d61223</citedby><cites>FETCH-LOGICAL-c430t-ba56cb313ae92a67d07c91c777bdc56a093a71b4e2241454ca64bf276e6d61223</cites><orcidid>0000-0002-0470-9493 ; 0000-0002-5981-109X ; 0000-0002-8613-7870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267020303895$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32340666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03045118$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Demesmay, Claire</contributor><creatorcontrib>Lecas, Lucile</creatorcontrib><creatorcontrib>Hartmann, Lucie</creatorcontrib><creatorcontrib>Caro, Lydia</creatorcontrib><creatorcontrib>Mohamed-Bouteben, Sarah</creatorcontrib><creatorcontrib>Raingeval, Claire</creatorcontrib><creatorcontrib>Krimm, Isabelle</creatorcontrib><creatorcontrib>Wagner, Renaud</creatorcontrib><creatorcontrib>Dugas, Vincent</creatorcontrib><creatorcontrib>Demesmay, Claire</creatorcontrib><title>Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 μg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR. [Display omitted] •Nanodiscs-embedded AA2AR were immobilized onto monolithic nano-columns.•Streptavidin-biotin immobilization ensures low protein consumption (∼1 μg/column).•Frontal affinity chromatography was used to identify ligand/receptor interaction.•Weak affinity interactions (low to high μM range) can be detected/quantified.•6 fragments (low affinity ligands) were identified.</description><subject>Analytical chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemical Sciences</subject><subject>Life Sciences</subject><subject>Medicinal Chemistry</subject><subject>Membrane protein</subject><subject>Miniaturization</subject><subject>Nanodisc</subject><subject>Organic chemistry</subject><subject>Protein-ligand interaction</subject><subject>Structural Biology</subject><subject>Weak affinity chromatography</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEURS0EoqHwA9ggb1nM8PwRuxGrqoK2UhAbWFtv7DeNQzIe2U5R-PU4CnTZlfWu7rmSD2PvBfQChPm07dFjL0FCD6oHI1-whbiyqtNK6pdsAQCqk8bCBXtTyradUoB-zS6UVBqMMQt2-BaniPWQ4x8K_DfhL47j2LJ65H6T0x5resg4b458TJnv4gNOgcdAU41j9Fhjmnga-YRTCrH40tF-oBDa2G0351QpTtynw7xrSSZPc025vGWvRtwVevfvvWQ_v375cXPXrb_f3t9crzuvFdRuwKXxgxIKaSXR2ADWr4S31g7BLw3CSqEVgyYptdBL7dHoYZTWkAlGSKku2cfz7gZ3bs5xj_noEkZ3d712pwwU6KUQV4-idcW563MqJdP4BAhwJ91u65pud9LdONd0N-bDmZkPw57CE_Hfbyt8Pheo_fIxUnbFR5o8hdhkVBdSfGb-L1qgkYw</recordid><startdate>20200529</startdate><enddate>20200529</enddate><creator>Lecas, Lucile</creator><creator>Hartmann, Lucie</creator><creator>Caro, Lydia</creator><creator>Mohamed-Bouteben, Sarah</creator><creator>Raingeval, Claire</creator><creator>Krimm, Isabelle</creator><creator>Wagner, Renaud</creator><creator>Dugas, Vincent</creator><creator>Demesmay, Claire</creator><general>Elsevier B.V</general><general>Elsevier Masson</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0470-9493</orcidid><orcidid>https://orcid.org/0000-0002-5981-109X</orcidid><orcidid>https://orcid.org/0000-0002-8613-7870</orcidid></search><sort><creationdate>20200529</creationdate><title>Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors</title><author>Lecas, Lucile ; Hartmann, Lucie ; Caro, Lydia ; Mohamed-Bouteben, Sarah ; Raingeval, Claire ; Krimm, Isabelle ; Wagner, Renaud ; Dugas, Vincent ; Demesmay, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ba56cb313ae92a67d07c91c777bdc56a093a71b4e2241454ca64bf276e6d61223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemical Sciences</topic><topic>Life Sciences</topic><topic>Medicinal Chemistry</topic><topic>Membrane protein</topic><topic>Miniaturization</topic><topic>Nanodisc</topic><topic>Organic chemistry</topic><topic>Protein-ligand interaction</topic><topic>Structural Biology</topic><topic>Weak affinity chromatography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lecas, Lucile</creatorcontrib><creatorcontrib>Hartmann, Lucie</creatorcontrib><creatorcontrib>Caro, Lydia</creatorcontrib><creatorcontrib>Mohamed-Bouteben, Sarah</creatorcontrib><creatorcontrib>Raingeval, Claire</creatorcontrib><creatorcontrib>Krimm, Isabelle</creatorcontrib><creatorcontrib>Wagner, Renaud</creatorcontrib><creatorcontrib>Dugas, Vincent</creatorcontrib><creatorcontrib>Demesmay, Claire</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lecas, Lucile</au><au>Hartmann, Lucie</au><au>Caro, Lydia</au><au>Mohamed-Bouteben, Sarah</au><au>Raingeval, Claire</au><au>Krimm, Isabelle</au><au>Wagner, Renaud</au><au>Dugas, Vincent</au><au>Demesmay, Claire</au><au>Demesmay, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2020-05-29</date><risdate>2020</risdate><volume>1113</volume><spage>26</spage><epage>35</epage><pages>26-35</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>Biophysical techniques that enable the screening and identification of weak affinity fragments against a target protein are at the heart of Fragment Based Drug Design approaches. In the case of membrane proteins, the crucial criteria for fragment screening are low protein consumption, unbiased conformational states and rapidity because of the difficulties in obtaining sufficient amounts of stable and functionally folded proteins. Here we show for the first time that lipid-nanodisc systems (membrane-mimicking environment) and miniaturized affinity chromatography can be combined to identify specific small molecule ligands that bind to an integral membrane protein. The approach was exemplified using the AA2AR GPCR. Home-made affinity nano-columns modified with nanodiscs-embedded AA2AR (only about 1 μg of protein per column) were fully characterized by frontal chromatographic experiments. This method allows (i) to distinguish specific and unspecific ligand/receptor interactions, (ii) to assess dissociation constants, (iii) to identify the binding pocket of uncharacterized ligands using a reference compound (whose binding site is known) with competition experiments. Weak affinity ligands with Kd in the low to high micromolar range can be detected. At last, the applicability of this method was demonstrated with 6 fragments recently identified as ligands or non-ligands of AA2AR. [Display omitted] •Nanodiscs-embedded AA2AR were immobilized onto monolithic nano-columns.•Streptavidin-biotin immobilization ensures low protein consumption (∼1 μg/column).•Frontal affinity chromatography was used to identify ligand/receptor interaction.•Weak affinity interactions (low to high μM range) can be detected/quantified.•6 fragments (low affinity ligands) were identified.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32340666</pmid><doi>10.1016/j.aca.2020.03.062</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0470-9493</orcidid><orcidid>https://orcid.org/0000-0002-5981-109X</orcidid><orcidid>https://orcid.org/0000-0002-8613-7870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2020-05, Vol.1113, p.26-35
issn 0003-2670
1873-4324
language eng
recordid cdi_hal_primary_oai_HAL_hal_03045118v1
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Biochemistry, Molecular Biology
Chemical Sciences
Life Sciences
Medicinal Chemistry
Membrane protein
Miniaturization
Nanodisc
Organic chemistry
Protein-ligand interaction
Structural Biology
Weak affinity chromatography
title Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20weak%20affinity%20chromatography%20for%20ligand%20identification%20of%20nanodiscs-embedded%20G-protein%20coupled%20receptors&rft.jtitle=Analytica%20chimica%20acta&rft.au=Lecas,%20Lucile&rft.date=2020-05-29&rft.volume=1113&rft.spage=26&rft.epage=35&rft.pages=26-35&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2020.03.062&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03045118v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32340666&rft_els_id=S0003267020303895&rfr_iscdi=true