Predicting plasticity in disordered solids from structural indicators
Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a varie...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2020-11, Vol.4 (11), Article 113609 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review materials |
container_volume | 4 |
creator | Richard, D. Ozawa, M. Patinet, S. Stanifer, E. Shang, B. Ridout, S. A. Xu, B. Zhang, G. Morse, P. K. Barrat, J.-L. Berthier, L. Falk, M. L. Guan, P. Liu, A. J. Martens, K. Sastry, S. Vandembroucq, D. Lerner, E. Manning, M. L. |
description | Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a variety of conditions we carefully assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow in amorphous solids. We further demonstrate that the density of defects changes as a function of material preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work represents an important step towards predicting how and when an amorphous solid will fail from its microscopic structure. |
doi_str_mv | 10.1103/PhysRevMaterials.4.113609 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03038324v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03038324v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-2a525ae6213fe798745510eccfdb6ebf99da817040f1cb58b0d2af811768941e3</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWGr_w_row9ZMLrvJYynVFioW0eeQzcVGtt2SpIX9926piPg0w5nvzIGD0D3gKQCmj5ttn97c6UVnF4Nu05QNOq2wvEIjwmpeSsnp9Z_9Fk1S-sIYg-BAajlCi010Npgc9p_FodUpBxNyX4R9YUPqonXDuUhdG2wqfOx2RcrxaPIx6naABqfOXUx36MYP-W7yM8fo42nxPl-W69fn1Xy2Lg2rRC6J5oRrVxGg3tVS1IxzwM4Yb5vKNV5KqwXUmGEPpuGiwZZoLwDqSkgGjo7Rw-XvVrfqEMNOx151OqjlbK3OGqaYCkrYCQZWXlgTu5Si878GwOpcn_pfn2LqUh_9BtngaVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting plasticity in disordered solids from structural indicators</title><source>American Physical Society Journals</source><creator>Richard, D. ; Ozawa, M. ; Patinet, S. ; Stanifer, E. ; Shang, B. ; Ridout, S. A. ; Xu, B. ; Zhang, G. ; Morse, P. K. ; Barrat, J.-L. ; Berthier, L. ; Falk, M. L. ; Guan, P. ; Liu, A. J. ; Martens, K. ; Sastry, S. ; Vandembroucq, D. ; Lerner, E. ; Manning, M. L.</creator><creatorcontrib>Richard, D. ; Ozawa, M. ; Patinet, S. ; Stanifer, E. ; Shang, B. ; Ridout, S. A. ; Xu, B. ; Zhang, G. ; Morse, P. K. ; Barrat, J.-L. ; Berthier, L. ; Falk, M. L. ; Guan, P. ; Liu, A. J. ; Martens, K. ; Sastry, S. ; Vandembroucq, D. ; Lerner, E. ; Manning, M. L.</creatorcontrib><description>Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a variety of conditions we carefully assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow in amorphous solids. We further demonstrate that the density of defects changes as a function of material preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work represents an important step towards predicting how and when an amorphous solid will fail from its microscopic structure.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.4.113609</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Mechanics ; Physics ; Solid mechanics</subject><ispartof>Physical review materials, 2020-11, Vol.4 (11), Article 113609</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-2a525ae6213fe798745510eccfdb6ebf99da817040f1cb58b0d2af811768941e3</citedby><cites>FETCH-LOGICAL-c468t-2a525ae6213fe798745510eccfdb6ebf99da817040f1cb58b0d2af811768941e3</cites><orcidid>0000-0002-1639-5284 ; 0000-0003-2059-702X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03038324$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, D.</creatorcontrib><creatorcontrib>Ozawa, M.</creatorcontrib><creatorcontrib>Patinet, S.</creatorcontrib><creatorcontrib>Stanifer, E.</creatorcontrib><creatorcontrib>Shang, B.</creatorcontrib><creatorcontrib>Ridout, S. A.</creatorcontrib><creatorcontrib>Xu, B.</creatorcontrib><creatorcontrib>Zhang, G.</creatorcontrib><creatorcontrib>Morse, P. K.</creatorcontrib><creatorcontrib>Barrat, J.-L.</creatorcontrib><creatorcontrib>Berthier, L.</creatorcontrib><creatorcontrib>Falk, M. L.</creatorcontrib><creatorcontrib>Guan, P.</creatorcontrib><creatorcontrib>Liu, A. J.</creatorcontrib><creatorcontrib>Martens, K.</creatorcontrib><creatorcontrib>Sastry, S.</creatorcontrib><creatorcontrib>Vandembroucq, D.</creatorcontrib><creatorcontrib>Lerner, E.</creatorcontrib><creatorcontrib>Manning, M. L.</creatorcontrib><title>Predicting plasticity in disordered solids from structural indicators</title><title>Physical review materials</title><description>Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a variety of conditions we carefully assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow in amorphous solids. We further demonstrate that the density of defects changes as a function of material preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work represents an important step towards predicting how and when an amorphous solid will fail from its microscopic structure.</description><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkFtLAzEQhYMoWGr_w_row9ZMLrvJYynVFioW0eeQzcVGtt2SpIX9926piPg0w5nvzIGD0D3gKQCmj5ttn97c6UVnF4Nu05QNOq2wvEIjwmpeSsnp9Z_9Fk1S-sIYg-BAajlCi010Npgc9p_FodUpBxNyX4R9YUPqonXDuUhdG2wqfOx2RcrxaPIx6naABqfOXUx36MYP-W7yM8fo42nxPl-W69fn1Xy2Lg2rRC6J5oRrVxGg3tVS1IxzwM4Yb5vKNV5KqwXUmGEPpuGiwZZoLwDqSkgGjo7Rw-XvVrfqEMNOx151OqjlbK3OGqaYCkrYCQZWXlgTu5Si878GwOpcn_pfn2LqUh_9BtngaVE</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Richard, D.</creator><creator>Ozawa, M.</creator><creator>Patinet, S.</creator><creator>Stanifer, E.</creator><creator>Shang, B.</creator><creator>Ridout, S. A.</creator><creator>Xu, B.</creator><creator>Zhang, G.</creator><creator>Morse, P. K.</creator><creator>Barrat, J.-L.</creator><creator>Berthier, L.</creator><creator>Falk, M. L.</creator><creator>Guan, P.</creator><creator>Liu, A. J.</creator><creator>Martens, K.</creator><creator>Sastry, S.</creator><creator>Vandembroucq, D.</creator><creator>Lerner, E.</creator><creator>Manning, M. L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1639-5284</orcidid><orcidid>https://orcid.org/0000-0003-2059-702X</orcidid></search><sort><creationdate>20201124</creationdate><title>Predicting plasticity in disordered solids from structural indicators</title><author>Richard, D. ; Ozawa, M. ; Patinet, S. ; Stanifer, E. ; Shang, B. ; Ridout, S. A. ; Xu, B. ; Zhang, G. ; Morse, P. K. ; Barrat, J.-L. ; Berthier, L. ; Falk, M. L. ; Guan, P. ; Liu, A. J. ; Martens, K. ; Sastry, S. ; Vandembroucq, D. ; Lerner, E. ; Manning, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-2a525ae6213fe798745510eccfdb6ebf99da817040f1cb58b0d2af811768941e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, D.</creatorcontrib><creatorcontrib>Ozawa, M.</creatorcontrib><creatorcontrib>Patinet, S.</creatorcontrib><creatorcontrib>Stanifer, E.</creatorcontrib><creatorcontrib>Shang, B.</creatorcontrib><creatorcontrib>Ridout, S. A.</creatorcontrib><creatorcontrib>Xu, B.</creatorcontrib><creatorcontrib>Zhang, G.</creatorcontrib><creatorcontrib>Morse, P. K.</creatorcontrib><creatorcontrib>Barrat, J.-L.</creatorcontrib><creatorcontrib>Berthier, L.</creatorcontrib><creatorcontrib>Falk, M. L.</creatorcontrib><creatorcontrib>Guan, P.</creatorcontrib><creatorcontrib>Liu, A. J.</creatorcontrib><creatorcontrib>Martens, K.</creatorcontrib><creatorcontrib>Sastry, S.</creatorcontrib><creatorcontrib>Vandembroucq, D.</creatorcontrib><creatorcontrib>Lerner, E.</creatorcontrib><creatorcontrib>Manning, M. L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, D.</au><au>Ozawa, M.</au><au>Patinet, S.</au><au>Stanifer, E.</au><au>Shang, B.</au><au>Ridout, S. A.</au><au>Xu, B.</au><au>Zhang, G.</au><au>Morse, P. K.</au><au>Barrat, J.-L.</au><au>Berthier, L.</au><au>Falk, M. L.</au><au>Guan, P.</au><au>Liu, A. J.</au><au>Martens, K.</au><au>Sastry, S.</au><au>Vandembroucq, D.</au><au>Lerner, E.</au><au>Manning, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting plasticity in disordered solids from structural indicators</atitle><jtitle>Physical review materials</jtitle><date>2020-11-24</date><risdate>2020</risdate><volume>4</volume><issue>11</issue><artnum>113609</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators in computational models of glasses, under a variety of conditions we carefully assess which of these indicators are able to robustly identify the structural defects responsible for plastic flow in amorphous solids. We further demonstrate that the density of defects changes as a function of material preparation and strain in a manner that is highly correlated with the macroscopic material response. Our work represents an important step towards predicting how and when an amorphous solid will fail from its microscopic structure.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevMaterials.4.113609</doi><orcidid>https://orcid.org/0000-0002-1639-5284</orcidid><orcidid>https://orcid.org/0000-0003-2059-702X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2020-11, Vol.4 (11), Article 113609 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03038324v1 |
source | American Physical Society Journals |
subjects | Mechanics Physics Solid mechanics |
title | Predicting plasticity in disordered solids from structural indicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20plasticity%20in%20disordered%20solids%20from%20structural%20indicators&rft.jtitle=Physical%20review%20materials&rft.au=Richard,%20D.&rft.date=2020-11-24&rft.volume=4&rft.issue=11&rft.artnum=113609&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.4.113609&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03038324v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |