A Phase Transition for Large Values of Bifurcating Autoregressive Models

We describe the asymptotic behavior of the number Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-12, Vol.34 (4), p.2081-2116
Hauptverfasser: Bansaye, Vincent, Bitseki Penda, S. Valère
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2116
container_issue 4
container_start_page 2081
container_title Journal of theoretical probability
container_volume 34
creator Bansaye, Vincent
Bitseki Penda, S. Valère
description We describe the asymptotic behavior of the number Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of Z n [ a n , ∞ ) is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.
doi_str_mv 10.1007/s10959-020-01033-w
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03034151v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583988161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-be04c93c4c1f839e1bccb1024f356c24e096f05228a78d9f00559632a44856b23</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmBgC139JPAYEFKkIhsJqOa6dpgpxsZNWvD0pQbAxWbo633d9D0LnBK4IQHYdCUghE6CQAAHGkt0BmhCR0URSBodoArnkicw5HKOTGNcAICXABM0K_LLS0eJF0G2su9q32PmA5zpUFr_pprcRe4dvatcHo7u6rXDRdz7YKtgY663FT35pm3iKjpxuoj37eafo9f5ucTtL5s8Pj7fFPDFMZl1SWuBGMsMNcTmTlpTGlAQod0ykhnILMnUgKM11li-lAxBCpoxqznORlpRN0eXYu9KN2oT6XYdP5XWtZsVc7WfAgHEiyJYM7MXIboL_GA7p1Nr3oR2-p6gYtuc5SfcUHSkTfIzBut9aAmpvV4121WBXfdtVuyHExlAc4Lay4a_6n9QXiwp7Ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583988161</pqid></control><display><type>article</type><title>A Phase Transition for Large Values of Bifurcating Autoregressive Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bansaye, Vincent ; Bitseki Penda, S. Valère</creator><creatorcontrib>Bansaye, Vincent ; Bitseki Penda, S. Valère</creatorcontrib><description>We describe the asymptotic behavior of the number Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of Z n [ a n , ∞ ) is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-020-01033-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Autoregressive models ; Autoregressive processes ; Bifurcations ; Deviation ; Mathematics ; Mathematics and Statistics ; Phase transitions ; Probability ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2021-12, Vol.34 (4), p.2081-2116</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-be04c93c4c1f839e1bccb1024f356c24e096f05228a78d9f00559632a44856b23</citedby><cites>FETCH-LOGICAL-c397t-be04c93c4c1f839e1bccb1024f356c24e096f05228a78d9f00559632a44856b23</cites><orcidid>0000-0001-8728-1586 ; 0000-0002-7631-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-020-01033-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-020-01033-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03034151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bansaye, Vincent</creatorcontrib><creatorcontrib>Bitseki Penda, S. Valère</creatorcontrib><title>A Phase Transition for Large Values of Bifurcating Autoregressive Models</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We describe the asymptotic behavior of the number Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of Z n [ a n , ∞ ) is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.</description><subject>Asymptotic properties</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Bifurcations</subject><subject>Deviation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase transitions</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmBgC139JPAYEFKkIhsJqOa6dpgpxsZNWvD0pQbAxWbo633d9D0LnBK4IQHYdCUghE6CQAAHGkt0BmhCR0URSBodoArnkicw5HKOTGNcAICXABM0K_LLS0eJF0G2su9q32PmA5zpUFr_pprcRe4dvatcHo7u6rXDRdz7YKtgY663FT35pm3iKjpxuoj37eafo9f5ucTtL5s8Pj7fFPDFMZl1SWuBGMsMNcTmTlpTGlAQod0ykhnILMnUgKM11li-lAxBCpoxqznORlpRN0eXYu9KN2oT6XYdP5XWtZsVc7WfAgHEiyJYM7MXIboL_GA7p1Nr3oR2-p6gYtuc5SfcUHSkTfIzBut9aAmpvV4121WBXfdtVuyHExlAc4Lay4a_6n9QXiwp7Ew</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bansaye, Vincent</creator><creator>Bitseki Penda, S. Valère</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8728-1586</orcidid><orcidid>https://orcid.org/0000-0002-7631-3244</orcidid></search><sort><creationdate>20211201</creationdate><title>A Phase Transition for Large Values of Bifurcating Autoregressive Models</title><author>Bansaye, Vincent ; Bitseki Penda, S. Valère</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-be04c93c4c1f839e1bccb1024f356c24e096f05228a78d9f00559632a44856b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Bifurcations</topic><topic>Deviation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase transitions</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bansaye, Vincent</creatorcontrib><creatorcontrib>Bitseki Penda, S. Valère</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bansaye, Vincent</au><au>Bitseki Penda, S. Valère</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phase Transition for Large Values of Bifurcating Autoregressive Models</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>34</volume><issue>4</issue><spage>2081</spage><epage>2116</epage><pages>2081-2116</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We describe the asymptotic behavior of the number Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of Z n [ a n , ∞ ) is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-020-01033-w</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-8728-1586</orcidid><orcidid>https://orcid.org/0000-0002-7631-3244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2021-12, Vol.34 (4), p.2081-2116
issn 0894-9840
1572-9230
language eng
recordid cdi_hal_primary_oai_HAL_hal_03034151v1
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Autoregressive models
Autoregressive processes
Bifurcations
Deviation
Mathematics
Mathematics and Statistics
Phase transitions
Probability
Probability Theory and Stochastic Processes
Statistics
title A Phase Transition for Large Values of Bifurcating Autoregressive Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phase%20Transition%20for%20Large%20Values%20of%20Bifurcating%20Autoregressive%20Models&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Bansaye,%20Vincent&rft.date=2021-12-01&rft.volume=34&rft.issue=4&rft.spage=2081&rft.epage=2116&rft.pages=2081-2116&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-020-01033-w&rft_dat=%3Cproquest_hal_p%3E2583988161%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583988161&rft_id=info:pmid/&rfr_iscdi=true