Chemical product design integrating MCDA: Performance prediction and human preferences modelling
Computation‐based techniques and modelling of human knowledge and preferences by using multi‐criteria decision aid (MCDA) methods are integrated in a multi‐scale and multi‐disciplinary approach for the chemical product and process design. The proposed methodology has four main stages: (a) constructi...
Gespeichert in:
Veröffentlicht in: | Canadian journal of chemical engineering 2021-10, Vol.99 (S1), p.S470-S484 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S484 |
---|---|
container_issue | S1 |
container_start_page | S470 |
container_title | Canadian journal of chemical engineering |
container_volume | 99 |
creator | Suárez Palacios, Oscar Yesid Narváez Rincón, Paulo César Camargo, Mauricio Corriou, Jean‐Pierre Fonteix, Christian |
description | Computation‐based techniques and modelling of human knowledge and preferences by using multi‐criteria decision aid (MCDA) methods are integrated in a multi‐scale and multi‐disciplinary approach for the chemical product and process design. The proposed methodology has four main stages: (a) construction of a molecular model for predicting product performance, (b) validation of product performance, (c) selection of alternatives integrating preferences of manufacturers and consumers, and (d) process optimization implementing MCDA methods. The methodology is oriented to find new products that can replace components of formulations, whose performance is already known. It was applied to an exploratory study about the use of glycerol as raw material to produce plasticizers for polyvinyl chloride (PVC), replacing 2‐ethylhexyl phthalate (DEHP). The results of the case study and the proposed process design offer promising prospects regarding their application in other chemical products.
Scheme for a chemical product design methodology using multi‐criteria decision aid. |
doi_str_mv | 10.1002/cjce.23956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03033524v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585294089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3356-45756b779cc711d59781dfab39ab8c6e9b6bb554af536c74f89508eaf59776ba3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssQIpxY7tOGZXhUJBRbAAiZ1xHKd1lQfYCah_j0MQS1ajuXPmdQE4xWiGEYov9VabWUwES_bABAsiIoTF6z6YIITSiCJCD8GR99uQxojiCXjLNqa2WlXw3bVFrztYGG_XDbRNZ9ZOdbZZw4fsen4Fn4wrW1erRpsAm8LqzrYNVE0BN32QB7E0zoS6h3VbmKoKzcfgoFSVNye_cQpebhbP2TJaPd7eZfNVpAlhSUQZZ0nOudCaY1wwwVNclConQuWpTozIkzxnjKqSkURzWqaCodSEVHCe5IpMwfk4d6Mq-e5srdxOtsrK5XwlBw0RFDbF9BMH9mxkw88fvfGd3La9a8J5MmYpiwVFqQjUxUhp13offvsbi5Ec3JaD2_LH7QDjEf6yldn9Q8rsPluMPd_ip4GF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585294089</pqid></control><display><type>article</type><title>Chemical product design integrating MCDA: Performance prediction and human preferences modelling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suárez Palacios, Oscar Yesid ; Narváez Rincón, Paulo César ; Camargo, Mauricio ; Corriou, Jean‐Pierre ; Fonteix, Christian</creator><creatorcontrib>Suárez Palacios, Oscar Yesid ; Narváez Rincón, Paulo César ; Camargo, Mauricio ; Corriou, Jean‐Pierre ; Fonteix, Christian</creatorcontrib><description>Computation‐based techniques and modelling of human knowledge and preferences by using multi‐criteria decision aid (MCDA) methods are integrated in a multi‐scale and multi‐disciplinary approach for the chemical product and process design. The proposed methodology has four main stages: (a) construction of a molecular model for predicting product performance, (b) validation of product performance, (c) selection of alternatives integrating preferences of manufacturers and consumers, and (d) process optimization implementing MCDA methods. The methodology is oriented to find new products that can replace components of formulations, whose performance is already known. It was applied to an exploratory study about the use of glycerol as raw material to produce plasticizers for polyvinyl chloride (PVC), replacing 2‐ethylhexyl phthalate (DEHP). The results of the case study and the proposed process design offer promising prospects regarding their application in other chemical products.
Scheme for a chemical product design methodology using multi‐criteria decision aid.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.23956</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Chemical and Process Engineering ; chemical product design ; Chemical products ; design methodology ; Dioctyl phthalate ; Engineering Sciences ; glycerol esters ; Human performance ; Materials ; MCDA ; Optimization ; Performance prediction ; Polyvinyl chloride ; Product design ; PVC plasticizers</subject><ispartof>Canadian journal of chemical engineering, 2021-10, Vol.99 (S1), p.S470-S484</ispartof><rights>2020 Canadian Society for Chemical Engineering</rights><rights>2021 Canadian Society for Chemical Engineering</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3356-45756b779cc711d59781dfab39ab8c6e9b6bb554af536c74f89508eaf59776ba3</citedby><cites>FETCH-LOGICAL-c3356-45756b779cc711d59781dfab39ab8c6e9b6bb554af536c74f89508eaf59776ba3</cites><orcidid>0000-0003-1854-7007 ; 0000-0003-4780-3313 ; 0000-0003-3867-2438 ; 0000-0003-4865-4540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.23956$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.23956$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27913,27914,45563,45564</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03033524$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Suárez Palacios, Oscar Yesid</creatorcontrib><creatorcontrib>Narváez Rincón, Paulo César</creatorcontrib><creatorcontrib>Camargo, Mauricio</creatorcontrib><creatorcontrib>Corriou, Jean‐Pierre</creatorcontrib><creatorcontrib>Fonteix, Christian</creatorcontrib><title>Chemical product design integrating MCDA: Performance prediction and human preferences modelling</title><title>Canadian journal of chemical engineering</title><description>Computation‐based techniques and modelling of human knowledge and preferences by using multi‐criteria decision aid (MCDA) methods are integrated in a multi‐scale and multi‐disciplinary approach for the chemical product and process design. The proposed methodology has four main stages: (a) construction of a molecular model for predicting product performance, (b) validation of product performance, (c) selection of alternatives integrating preferences of manufacturers and consumers, and (d) process optimization implementing MCDA methods. The methodology is oriented to find new products that can replace components of formulations, whose performance is already known. It was applied to an exploratory study about the use of glycerol as raw material to produce plasticizers for polyvinyl chloride (PVC), replacing 2‐ethylhexyl phthalate (DEHP). The results of the case study and the proposed process design offer promising prospects regarding their application in other chemical products.
Scheme for a chemical product design methodology using multi‐criteria decision aid.</description><subject>Chemical and Process Engineering</subject><subject>chemical product design</subject><subject>Chemical products</subject><subject>design methodology</subject><subject>Dioctyl phthalate</subject><subject>Engineering Sciences</subject><subject>glycerol esters</subject><subject>Human performance</subject><subject>Materials</subject><subject>MCDA</subject><subject>Optimization</subject><subject>Performance prediction</subject><subject>Polyvinyl chloride</subject><subject>Product design</subject><subject>PVC plasticizers</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssQIpxY7tOGZXhUJBRbAAiZ1xHKd1lQfYCah_j0MQS1ajuXPmdQE4xWiGEYov9VabWUwES_bABAsiIoTF6z6YIITSiCJCD8GR99uQxojiCXjLNqa2WlXw3bVFrztYGG_XDbRNZ9ZOdbZZw4fsen4Fn4wrW1erRpsAm8LqzrYNVE0BN32QB7E0zoS6h3VbmKoKzcfgoFSVNye_cQpebhbP2TJaPd7eZfNVpAlhSUQZZ0nOudCaY1wwwVNclConQuWpTozIkzxnjKqSkURzWqaCodSEVHCe5IpMwfk4d6Mq-e5srdxOtsrK5XwlBw0RFDbF9BMH9mxkw88fvfGd3La9a8J5MmYpiwVFqQjUxUhp13offvsbi5Ec3JaD2_LH7QDjEf6yldn9Q8rsPluMPd_ip4GF</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Suárez Palacios, Oscar Yesid</creator><creator>Narváez Rincón, Paulo César</creator><creator>Camargo, Mauricio</creator><creator>Corriou, Jean‐Pierre</creator><creator>Fonteix, Christian</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1854-7007</orcidid><orcidid>https://orcid.org/0000-0003-4780-3313</orcidid><orcidid>https://orcid.org/0000-0003-3867-2438</orcidid><orcidid>https://orcid.org/0000-0003-4865-4540</orcidid></search><sort><creationdate>202110</creationdate><title>Chemical product design integrating MCDA: Performance prediction and human preferences modelling</title><author>Suárez Palacios, Oscar Yesid ; Narváez Rincón, Paulo César ; Camargo, Mauricio ; Corriou, Jean‐Pierre ; Fonteix, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3356-45756b779cc711d59781dfab39ab8c6e9b6bb554af536c74f89508eaf59776ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical and Process Engineering</topic><topic>chemical product design</topic><topic>Chemical products</topic><topic>design methodology</topic><topic>Dioctyl phthalate</topic><topic>Engineering Sciences</topic><topic>glycerol esters</topic><topic>Human performance</topic><topic>Materials</topic><topic>MCDA</topic><topic>Optimization</topic><topic>Performance prediction</topic><topic>Polyvinyl chloride</topic><topic>Product design</topic><topic>PVC plasticizers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suárez Palacios, Oscar Yesid</creatorcontrib><creatorcontrib>Narváez Rincón, Paulo César</creatorcontrib><creatorcontrib>Camargo, Mauricio</creatorcontrib><creatorcontrib>Corriou, Jean‐Pierre</creatorcontrib><creatorcontrib>Fonteix, Christian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suárez Palacios, Oscar Yesid</au><au>Narváez Rincón, Paulo César</au><au>Camargo, Mauricio</au><au>Corriou, Jean‐Pierre</au><au>Fonteix, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical product design integrating MCDA: Performance prediction and human preferences modelling</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2021-10</date><risdate>2021</risdate><volume>99</volume><issue>S1</issue><spage>S470</spage><epage>S484</epage><pages>S470-S484</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Computation‐based techniques and modelling of human knowledge and preferences by using multi‐criteria decision aid (MCDA) methods are integrated in a multi‐scale and multi‐disciplinary approach for the chemical product and process design. The proposed methodology has four main stages: (a) construction of a molecular model for predicting product performance, (b) validation of product performance, (c) selection of alternatives integrating preferences of manufacturers and consumers, and (d) process optimization implementing MCDA methods. The methodology is oriented to find new products that can replace components of formulations, whose performance is already known. It was applied to an exploratory study about the use of glycerol as raw material to produce plasticizers for polyvinyl chloride (PVC), replacing 2‐ethylhexyl phthalate (DEHP). The results of the case study and the proposed process design offer promising prospects regarding their application in other chemical products.
Scheme for a chemical product design methodology using multi‐criteria decision aid.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cjce.23956</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1854-7007</orcidid><orcidid>https://orcid.org/0000-0003-4780-3313</orcidid><orcidid>https://orcid.org/0000-0003-3867-2438</orcidid><orcidid>https://orcid.org/0000-0003-4865-4540</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4034 |
ispartof | Canadian journal of chemical engineering, 2021-10, Vol.99 (S1), p.S470-S484 |
issn | 0008-4034 1939-019X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03033524v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical and Process Engineering chemical product design Chemical products design methodology Dioctyl phthalate Engineering Sciences glycerol esters Human performance Materials MCDA Optimization Performance prediction Polyvinyl chloride Product design PVC plasticizers |
title | Chemical product design integrating MCDA: Performance prediction and human preferences modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20product%20design%20integrating%20MCDA:%20Performance%20prediction%20and%20human%20preferences%20modelling&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Su%C3%A1rez%20Palacios,%20Oscar%20Yesid&rft.date=2021-10&rft.volume=99&rft.issue=S1&rft.spage=S470&rft.epage=S484&rft.pages=S470-S484&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.23956&rft_dat=%3Cproquest_hal_p%3E2585294089%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585294089&rft_id=info:pmid/&rfr_iscdi=true |