Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing
•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper oc...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2020-07, Vol.170, p.108684-108699, Article 108684 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108699 |
---|---|
container_issue | |
container_start_page | 108684 |
container_title | Corrosion science |
container_volume | 170 |
creator | Sanviemvongsak, Tom Monceau, Daniel Desgranges, Clara Macquaire, Bruno |
description | •Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion.
The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk. |
doi_str_mv | 10.1016/j.corsci.2020.108684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03033081v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X19325399</els_id><sourcerecordid>2443645304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVoIW6aN8hBkFMP687syrJ0CRjTJgHTHNpAbmIsaROZ9cqVdp3m7SOzpceeBobv_5n5GLtCmCOg_Lqb25iyDfMa6tNKSSXO2AzVUlcgtPzAZgAIlW7U0zn7lPMOoJAIM_bzvh98ek7Ujx0lHv8ER0OIPY8t_xGqLWXPqeviG1-i4q9heOHE22jHzAtEzoUhHD3fl3xLdhhT6J8_s48tddlf_p0X7PH7t1_ru2rzcHu_Xm0qK1AMVU1opYbakfQStwvdeumQtkt0UltqHSnROK8RwFpf16jsQi4sbnWtWqupuWBfpt4X6swhhT2lNxMpmLvVxpx20EDTgMIjFvZ6Yg8p_h59Hswujqkv55laiEaKRQOiUGKibIo5J9_-q0UwJ9VmZybV5qTaTKpL7GaK-fLtMfhkCuF7611I3g7GxfD_gnfXCIhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443645304</pqid></control><display><type>article</type><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</creator><creatorcontrib>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</creatorcontrib><description>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion.
The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2020.108684</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Additive manufacturing ; Alloys ; Aluminum ; Chemical Sciences ; Diffusion ; Electron beam melting ; Grain boundaries ; Grain boundaries oxidation ; Grain size ; Heterogeneity ; Internal oxidation ; Laser beam melting ; Material chemistry ; Nickel base alloys ; Oxidation ; Reaction kinetics ; Superalloys ; Thermocalc ; Titanium ; Wrought alloys</subject><ispartof>Corrosion science, 2020-07, Vol.170, p.108684-108699, Article 108684</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</citedby><cites>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</cites><orcidid>0000-0002-0693-5005 ; 0000-0001-9544-3493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2020.108684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03033081$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanviemvongsak, Tom</creatorcontrib><creatorcontrib>Monceau, Daniel</creatorcontrib><creatorcontrib>Desgranges, Clara</creatorcontrib><creatorcontrib>Macquaire, Bruno</creatorcontrib><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><title>Corrosion science</title><description>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion.
The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</description><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Chemical Sciences</subject><subject>Diffusion</subject><subject>Electron beam melting</subject><subject>Grain boundaries</subject><subject>Grain boundaries oxidation</subject><subject>Grain size</subject><subject>Heterogeneity</subject><subject>Internal oxidation</subject><subject>Laser beam melting</subject><subject>Material chemistry</subject><subject>Nickel base alloys</subject><subject>Oxidation</subject><subject>Reaction kinetics</subject><subject>Superalloys</subject><subject>Thermocalc</subject><subject>Titanium</subject><subject>Wrought alloys</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVoIW6aN8hBkFMP687syrJ0CRjTJgHTHNpAbmIsaROZ9cqVdp3m7SOzpceeBobv_5n5GLtCmCOg_Lqb25iyDfMa6tNKSSXO2AzVUlcgtPzAZgAIlW7U0zn7lPMOoJAIM_bzvh98ek7Ujx0lHv8ER0OIPY8t_xGqLWXPqeviG1-i4q9heOHE22jHzAtEzoUhHD3fl3xLdhhT6J8_s48tddlf_p0X7PH7t1_ru2rzcHu_Xm0qK1AMVU1opYbakfQStwvdeumQtkt0UltqHSnROK8RwFpf16jsQi4sbnWtWqupuWBfpt4X6swhhT2lNxMpmLvVxpx20EDTgMIjFvZ6Yg8p_h59Hswujqkv55laiEaKRQOiUGKibIo5J9_-q0UwJ9VmZybV5qTaTKpL7GaK-fLtMfhkCuF7611I3g7GxfD_gnfXCIhM</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sanviemvongsak, Tom</creator><creator>Monceau, Daniel</creator><creator>Desgranges, Clara</creator><creator>Macquaire, Bruno</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0693-5005</orcidid><orcidid>https://orcid.org/0000-0001-9544-3493</orcidid></search><sort><creationdate>20200701</creationdate><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><author>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Chemical Sciences</topic><topic>Diffusion</topic><topic>Electron beam melting</topic><topic>Grain boundaries</topic><topic>Grain boundaries oxidation</topic><topic>Grain size</topic><topic>Heterogeneity</topic><topic>Internal oxidation</topic><topic>Laser beam melting</topic><topic>Material chemistry</topic><topic>Nickel base alloys</topic><topic>Oxidation</topic><topic>Reaction kinetics</topic><topic>Superalloys</topic><topic>Thermocalc</topic><topic>Titanium</topic><topic>Wrought alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanviemvongsak, Tom</creatorcontrib><creatorcontrib>Monceau, Daniel</creatorcontrib><creatorcontrib>Desgranges, Clara</creatorcontrib><creatorcontrib>Macquaire, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanviemvongsak, Tom</au><au>Monceau, Daniel</au><au>Desgranges, Clara</au><au>Macquaire, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</atitle><jtitle>Corrosion science</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>170</volume><spage>108684</spage><epage>108699</epage><pages>108684-108699</pages><artnum>108684</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion.
The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2020.108684</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0693-5005</orcidid><orcidid>https://orcid.org/0000-0001-9544-3493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2020-07, Vol.170, p.108684-108699, Article 108684 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03033081v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Additive manufacturing Alloys Aluminum Chemical Sciences Diffusion Electron beam melting Grain boundaries Grain boundaries oxidation Grain size Heterogeneity Internal oxidation Laser beam melting Material chemistry Nickel base alloys Oxidation Reaction kinetics Superalloys Thermocalc Titanium Wrought alloys |
title | Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intergranular%20oxidation%20of%20Ni-base%20alloy%20718%20with%20a%20focus%20on%20additive%20manufacturing&rft.jtitle=Corrosion%20science&rft.au=Sanviemvongsak,%20Tom&rft.date=2020-07-01&rft.volume=170&rft.spage=108684&rft.epage=108699&rft.pages=108684-108699&rft.artnum=108684&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2020.108684&rft_dat=%3Cproquest_hal_p%3E2443645304%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443645304&rft_id=info:pmid/&rft_els_id=S0010938X19325399&rfr_iscdi=true |