Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing

•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper oc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2020-07, Vol.170, p.108684-108699, Article 108684
Hauptverfasser: Sanviemvongsak, Tom, Monceau, Daniel, Desgranges, Clara, Macquaire, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108699
container_issue
container_start_page 108684
container_title Corrosion science
container_volume 170
creator Sanviemvongsak, Tom
Monceau, Daniel
Desgranges, Clara
Macquaire, Bruno
description •Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion. The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.
doi_str_mv 10.1016/j.corsci.2020.108684
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03033081v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X19325399</els_id><sourcerecordid>2443645304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVoIW6aN8hBkFMP687syrJ0CRjTJgHTHNpAbmIsaROZ9cqVdp3m7SOzpceeBobv_5n5GLtCmCOg_Lqb25iyDfMa6tNKSSXO2AzVUlcgtPzAZgAIlW7U0zn7lPMOoJAIM_bzvh98ek7Ujx0lHv8ER0OIPY8t_xGqLWXPqeviG1-i4q9heOHE22jHzAtEzoUhHD3fl3xLdhhT6J8_s48tddlf_p0X7PH7t1_ru2rzcHu_Xm0qK1AMVU1opYbakfQStwvdeumQtkt0UltqHSnROK8RwFpf16jsQi4sbnWtWqupuWBfpt4X6swhhT2lNxMpmLvVxpx20EDTgMIjFvZ6Yg8p_h59Hswujqkv55laiEaKRQOiUGKibIo5J9_-q0UwJ9VmZybV5qTaTKpL7GaK-fLtMfhkCuF7611I3g7GxfD_gnfXCIhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443645304</pqid></control><display><type>article</type><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</creator><creatorcontrib>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</creatorcontrib><description>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion. The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2020.108684</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Additive manufacturing ; Alloys ; Aluminum ; Chemical Sciences ; Diffusion ; Electron beam melting ; Grain boundaries ; Grain boundaries oxidation ; Grain size ; Heterogeneity ; Internal oxidation ; Laser beam melting ; Material chemistry ; Nickel base alloys ; Oxidation ; Reaction kinetics ; Superalloys ; Thermocalc ; Titanium ; Wrought alloys</subject><ispartof>Corrosion science, 2020-07, Vol.170, p.108684-108699, Article 108684</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</citedby><cites>FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</cites><orcidid>0000-0002-0693-5005 ; 0000-0001-9544-3493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2020.108684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03033081$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanviemvongsak, Tom</creatorcontrib><creatorcontrib>Monceau, Daniel</creatorcontrib><creatorcontrib>Desgranges, Clara</creatorcontrib><creatorcontrib>Macquaire, Bruno</creatorcontrib><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><title>Corrosion science</title><description>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion. The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</description><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Chemical Sciences</subject><subject>Diffusion</subject><subject>Electron beam melting</subject><subject>Grain boundaries</subject><subject>Grain boundaries oxidation</subject><subject>Grain size</subject><subject>Heterogeneity</subject><subject>Internal oxidation</subject><subject>Laser beam melting</subject><subject>Material chemistry</subject><subject>Nickel base alloys</subject><subject>Oxidation</subject><subject>Reaction kinetics</subject><subject>Superalloys</subject><subject>Thermocalc</subject><subject>Titanium</subject><subject>Wrought alloys</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVoIW6aN8hBkFMP687syrJ0CRjTJgHTHNpAbmIsaROZ9cqVdp3m7SOzpceeBobv_5n5GLtCmCOg_Lqb25iyDfMa6tNKSSXO2AzVUlcgtPzAZgAIlW7U0zn7lPMOoJAIM_bzvh98ek7Ujx0lHv8ER0OIPY8t_xGqLWXPqeviG1-i4q9heOHE22jHzAtEzoUhHD3fl3xLdhhT6J8_s48tddlf_p0X7PH7t1_ru2rzcHu_Xm0qK1AMVU1opYbakfQStwvdeumQtkt0UltqHSnROK8RwFpf16jsQi4sbnWtWqupuWBfpt4X6swhhT2lNxMpmLvVxpx20EDTgMIjFvZ6Yg8p_h59Hswujqkv55laiEaKRQOiUGKibIo5J9_-q0UwJ9VmZybV5qTaTKpL7GaK-fLtMfhkCuF7611I3g7GxfD_gnfXCIhM</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sanviemvongsak, Tom</creator><creator>Monceau, Daniel</creator><creator>Desgranges, Clara</creator><creator>Macquaire, Bruno</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0693-5005</orcidid><orcidid>https://orcid.org/0000-0001-9544-3493</orcidid></search><sort><creationdate>20200701</creationdate><title>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</title><author>Sanviemvongsak, Tom ; Monceau, Daniel ; Desgranges, Clara ; Macquaire, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2a1c6902da6e61b59fe6d1ab71d69cafda843de9100cce2218c565c1b928fc9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Chemical Sciences</topic><topic>Diffusion</topic><topic>Electron beam melting</topic><topic>Grain boundaries</topic><topic>Grain boundaries oxidation</topic><topic>Grain size</topic><topic>Heterogeneity</topic><topic>Internal oxidation</topic><topic>Laser beam melting</topic><topic>Material chemistry</topic><topic>Nickel base alloys</topic><topic>Oxidation</topic><topic>Reaction kinetics</topic><topic>Superalloys</topic><topic>Thermocalc</topic><topic>Titanium</topic><topic>Wrought alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanviemvongsak, Tom</creatorcontrib><creatorcontrib>Monceau, Daniel</creatorcontrib><creatorcontrib>Desgranges, Clara</creatorcontrib><creatorcontrib>Macquaire, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanviemvongsak, Tom</au><au>Monceau, Daniel</au><au>Desgranges, Clara</au><au>Macquaire, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing</atitle><jtitle>Corrosion science</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>170</volume><spage>108684</spage><epage>108699</epage><pages>108684-108699</pages><artnum>108684</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Additively manufactured alloys 718 show an excellent oxidation resistance in isothermal conditions.•TiNbO4 is identified by EBSD inside the Cr2O3 oxide scale, in agreement with thermodynamics.•AM samples present intergranular oxidation kinetics similar to the wrought alloy's but with deeper occurrences.•The larger the grain size, the thicker the oxide at the alloy grain boundaries.•Intergranular oxidation kinetics is controlled by both volume Al diffusion and interfacial oxygen diffusion. The intergranular oxidation in air at 850 °C of alloy 718 produced by laser beam melting and electron beam melting was compared to that of the wrought alloy. Quantitative analyses revealed that the amount of grain boundary oxidation was similar for these alloys. However, the additively manufactured ones presented deeper and thicker oxides at grain boundaries, due to grain size heterogeneity and to a smaller number of special boundaries. Results show that intergranular oxidation kinetics follows Wagner’s theory on internal oxidation considering not only O diffusion at the intergranular oxide/metal interfaces but also Al and Ti diffusion in the bulk.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2020.108684</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0693-5005</orcidid><orcidid>https://orcid.org/0000-0001-9544-3493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2020-07, Vol.170, p.108684-108699, Article 108684
issn 0010-938X
1879-0496
language eng
recordid cdi_hal_primary_oai_HAL_hal_03033081v1
source Access via ScienceDirect (Elsevier)
subjects Additive manufacturing
Alloys
Aluminum
Chemical Sciences
Diffusion
Electron beam melting
Grain boundaries
Grain boundaries oxidation
Grain size
Heterogeneity
Internal oxidation
Laser beam melting
Material chemistry
Nickel base alloys
Oxidation
Reaction kinetics
Superalloys
Thermocalc
Titanium
Wrought alloys
title Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intergranular%20oxidation%20of%20Ni-base%20alloy%20718%20with%20a%20focus%20on%20additive%20manufacturing&rft.jtitle=Corrosion%20science&rft.au=Sanviemvongsak,%20Tom&rft.date=2020-07-01&rft.volume=170&rft.spage=108684&rft.epage=108699&rft.pages=108684-108699&rft.artnum=108684&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2020.108684&rft_dat=%3Cproquest_hal_p%3E2443645304%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443645304&rft_id=info:pmid/&rft_els_id=S0010938X19325399&rfr_iscdi=true