The Leidenfrost transition of water droplets impinging onto a superheated surface

•Experiments are conducted on water droplets impinging on a sapphire surface heated up to 700 ∘C.•To characterize heat transfer, temperature of the solid surface is measured by IR thermography, and droplet temperature is determined by two-color laser-induced fluorescence imaging.•The dynamic LFP (Le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-10, Vol.160, p.120126, Article 120126
Hauptverfasser: Castanet, G., Caballina, O., Chaze, W., Collignon, R., Lemoine, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120126
container_title International journal of heat and mass transfer
container_volume 160
creator Castanet, G.
Caballina, O.
Chaze, W.
Collignon, R.
Lemoine, F.
description •Experiments are conducted on water droplets impinging on a sapphire surface heated up to 700 ∘C.•To characterize heat transfer, temperature of the solid surface is measured by IR thermography, and droplet temperature is determined by two-color laser-induced fluorescence imaging.•The dynamic LFP (Leidenfrost point) corresponds to the initial wall temperature for which the solid surface is cooled down to the temperature of the spinodal during the impact process.•Above the LFP, fingering boiling is observed while the liquid at the interface with the vapor film remains in a very high level of superheating.•The superheat of the liquid is an essential parameter for the modelling of heat transfer between liquid and solid surface in the film boiling regime. Water droplets impinge on a sapphire wall heated to a temperature ranging from 300∘C to 700∘C. Advanced measurement techniques are used to characterize the thermal processes associated with the drop impact. IR thermography, implemented by coating the impacted surface with an opaque and emissive material in the IR domain, makes it possible to measure the temperature of the solid surface during the impact process. Laser-induced fluorescence imaging is used to characterize the temperature field in the spreading droplet. At the onset of film boiling, the temperature distribution on the solid surface is marked by the formation of a fingering pattern. This latter corresponds to spatial fluctuations in the thickness of the vapor film. When a water droplet hits an overheated wall with a significant impact velocity, the thermal contact is so rapid and intense that the liquid temperature can largely overtake the saturation temperature and reach the spinodal temperature, i.e. the highest temperature at which water can exist in the liquid state. In this situation, experiments show that the dynamic Leidenfrost point is directly linked to the spinodal temperature. A superheating of the liquid by several hundred of ∘C and the subsequent homogeneous nucleation, have to be considered to describe the heat transfer in the film boiling regime.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.120126
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03032677v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020330623</els_id><sourcerecordid>2448962601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-dd9fb59f827bcc52a38d8a9fc3e7bfe893cc76bb1a3ca12c78c7492fbd5a2a4a3</originalsourceid><addsrcrecordid>eNqNkFFrFDEQx4Mo9Gz7HQK-6MNek-zeJnmzFLWWAynU5zCbTLwsd5s1yVX89mZd8cUXIZDMzJ8fkx8hbznbcsb7m3EbxgNCOUHOJcGUPaatYKKOBeOif0E2XEndCK70S7JhjMtGt5xdkNc5j0vJun5DHp8OSPcYHE4-xVzob1YoIU40evoDCibqUpyPWDINpzlM3-qhcSqRAs3nGdOyBrr6Th4sXpFXHo4Zr__cl-Trxw9Pd_fN_sunz3e3-8buhCqNc9oPO-2VkIOtLWiVU6C9bVEOHpVurZX9MHBoLXBhpbKy08IPbgcCOmgvybuVe4CjmVM4QfppIgRzf7s3S4-1rBW9lM-8Zt-s2TnF72fMxYzxnKa6nhFdp3Qverak3q8pW03khP4vljOzSDej-Ve6WaSbVXpFPKwIrD9_DnWabcDJogsJbTEuhv-H_QJZg5iy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448962601</pqid></control><display><type>article</type><title>The Leidenfrost transition of water droplets impinging onto a superheated surface</title><source>Access via ScienceDirect (Elsevier)</source><creator>Castanet, G. ; Caballina, O. ; Chaze, W. ; Collignon, R. ; Lemoine, F.</creator><creatorcontrib>Castanet, G. ; Caballina, O. ; Chaze, W. ; Collignon, R. ; Lemoine, F.</creatorcontrib><description>•Experiments are conducted on water droplets impinging on a sapphire surface heated up to 700 ∘C.•To characterize heat transfer, temperature of the solid surface is measured by IR thermography, and droplet temperature is determined by two-color laser-induced fluorescence imaging.•The dynamic LFP (Leidenfrost point) corresponds to the initial wall temperature for which the solid surface is cooled down to the temperature of the spinodal during the impact process.•Above the LFP, fingering boiling is observed while the liquid at the interface with the vapor film remains in a very high level of superheating.•The superheat of the liquid is an essential parameter for the modelling of heat transfer between liquid and solid surface in the film boiling regime. Water droplets impinge on a sapphire wall heated to a temperature ranging from 300∘C to 700∘C. Advanced measurement techniques are used to characterize the thermal processes associated with the drop impact. IR thermography, implemented by coating the impacted surface with an opaque and emissive material in the IR domain, makes it possible to measure the temperature of the solid surface during the impact process. Laser-induced fluorescence imaging is used to characterize the temperature field in the spreading droplet. At the onset of film boiling, the temperature distribution on the solid surface is marked by the formation of a fingering pattern. This latter corresponds to spatial fluctuations in the thickness of the vapor film. When a water droplet hits an overheated wall with a significant impact velocity, the thermal contact is so rapid and intense that the liquid temperature can largely overtake the saturation temperature and reach the spinodal temperature, i.e. the highest temperature at which water can exist in the liquid state. In this situation, experiments show that the dynamic Leidenfrost point is directly linked to the spinodal temperature. A superheating of the liquid by several hundred of ∘C and the subsequent homogeneous nucleation, have to be considered to describe the heat transfer in the film boiling regime.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.120126</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Drop impact ; Droplets ; Engineering Sciences ; Film boiling ; Impact velocity ; Infrared thermography ; Laser induced fluorescence ; Leidenfrost temperature ; Measurement techniques ; Nucleation ; Reactive fluid environment ; Sapphire ; Solid surfaces ; Superheating ; Surface water ; Temperature ; Temperature distribution ; Thermography ; Thickness ; Transition boiling ; Water drops</subject><ispartof>International journal of heat and mass transfer, 2020-10, Vol.160, p.120126, Article 120126</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-dd9fb59f827bcc52a38d8a9fc3e7bfe893cc76bb1a3ca12c78c7492fbd5a2a4a3</citedby><cites>FETCH-LOGICAL-c528t-dd9fb59f827bcc52a38d8a9fc3e7bfe893cc76bb1a3ca12c78c7492fbd5a2a4a3</cites><orcidid>0000-0003-2454-5729 ; 0000-0001-7611-9057 ; 0000-0002-5427-0343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03032677$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castanet, G.</creatorcontrib><creatorcontrib>Caballina, O.</creatorcontrib><creatorcontrib>Chaze, W.</creatorcontrib><creatorcontrib>Collignon, R.</creatorcontrib><creatorcontrib>Lemoine, F.</creatorcontrib><title>The Leidenfrost transition of water droplets impinging onto a superheated surface</title><title>International journal of heat and mass transfer</title><description>•Experiments are conducted on water droplets impinging on a sapphire surface heated up to 700 ∘C.•To characterize heat transfer, temperature of the solid surface is measured by IR thermography, and droplet temperature is determined by two-color laser-induced fluorescence imaging.•The dynamic LFP (Leidenfrost point) corresponds to the initial wall temperature for which the solid surface is cooled down to the temperature of the spinodal during the impact process.•Above the LFP, fingering boiling is observed while the liquid at the interface with the vapor film remains in a very high level of superheating.•The superheat of the liquid is an essential parameter for the modelling of heat transfer between liquid and solid surface in the film boiling regime. Water droplets impinge on a sapphire wall heated to a temperature ranging from 300∘C to 700∘C. Advanced measurement techniques are used to characterize the thermal processes associated with the drop impact. IR thermography, implemented by coating the impacted surface with an opaque and emissive material in the IR domain, makes it possible to measure the temperature of the solid surface during the impact process. Laser-induced fluorescence imaging is used to characterize the temperature field in the spreading droplet. At the onset of film boiling, the temperature distribution on the solid surface is marked by the formation of a fingering pattern. This latter corresponds to spatial fluctuations in the thickness of the vapor film. When a water droplet hits an overheated wall with a significant impact velocity, the thermal contact is so rapid and intense that the liquid temperature can largely overtake the saturation temperature and reach the spinodal temperature, i.e. the highest temperature at which water can exist in the liquid state. In this situation, experiments show that the dynamic Leidenfrost point is directly linked to the spinodal temperature. A superheating of the liquid by several hundred of ∘C and the subsequent homogeneous nucleation, have to be considered to describe the heat transfer in the film boiling regime.</description><subject>Drop impact</subject><subject>Droplets</subject><subject>Engineering Sciences</subject><subject>Film boiling</subject><subject>Impact velocity</subject><subject>Infrared thermography</subject><subject>Laser induced fluorescence</subject><subject>Leidenfrost temperature</subject><subject>Measurement techniques</subject><subject>Nucleation</subject><subject>Reactive fluid environment</subject><subject>Sapphire</subject><subject>Solid surfaces</subject><subject>Superheating</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Thermography</subject><subject>Thickness</subject><subject>Transition boiling</subject><subject>Water drops</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkFFrFDEQx4Mo9Gz7HQK-6MNek-zeJnmzFLWWAynU5zCbTLwsd5s1yVX89mZd8cUXIZDMzJ8fkx8hbznbcsb7m3EbxgNCOUHOJcGUPaatYKKOBeOif0E2XEndCK70S7JhjMtGt5xdkNc5j0vJun5DHp8OSPcYHE4-xVzob1YoIU40evoDCibqUpyPWDINpzlM3-qhcSqRAs3nGdOyBrr6Th4sXpFXHo4Zr__cl-Trxw9Pd_fN_sunz3e3-8buhCqNc9oPO-2VkIOtLWiVU6C9bVEOHpVurZX9MHBoLXBhpbKy08IPbgcCOmgvybuVe4CjmVM4QfppIgRzf7s3S4-1rBW9lM-8Zt-s2TnF72fMxYzxnKa6nhFdp3Qverak3q8pW03khP4vljOzSDej-Ve6WaSbVXpFPKwIrD9_DnWabcDJogsJbTEuhv-H_QJZg5iy</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Castanet, G.</creator><creator>Caballina, O.</creator><creator>Chaze, W.</creator><creator>Collignon, R.</creator><creator>Lemoine, F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2454-5729</orcidid><orcidid>https://orcid.org/0000-0001-7611-9057</orcidid><orcidid>https://orcid.org/0000-0002-5427-0343</orcidid></search><sort><creationdate>20201001</creationdate><title>The Leidenfrost transition of water droplets impinging onto a superheated surface</title><author>Castanet, G. ; Caballina, O. ; Chaze, W. ; Collignon, R. ; Lemoine, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-dd9fb59f827bcc52a38d8a9fc3e7bfe893cc76bb1a3ca12c78c7492fbd5a2a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Drop impact</topic><topic>Droplets</topic><topic>Engineering Sciences</topic><topic>Film boiling</topic><topic>Impact velocity</topic><topic>Infrared thermography</topic><topic>Laser induced fluorescence</topic><topic>Leidenfrost temperature</topic><topic>Measurement techniques</topic><topic>Nucleation</topic><topic>Reactive fluid environment</topic><topic>Sapphire</topic><topic>Solid surfaces</topic><topic>Superheating</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Thermography</topic><topic>Thickness</topic><topic>Transition boiling</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castanet, G.</creatorcontrib><creatorcontrib>Caballina, O.</creatorcontrib><creatorcontrib>Chaze, W.</creatorcontrib><creatorcontrib>Collignon, R.</creatorcontrib><creatorcontrib>Lemoine, F.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castanet, G.</au><au>Caballina, O.</au><au>Chaze, W.</au><au>Collignon, R.</au><au>Lemoine, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Leidenfrost transition of water droplets impinging onto a superheated surface</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>160</volume><spage>120126</spage><pages>120126-</pages><artnum>120126</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Experiments are conducted on water droplets impinging on a sapphire surface heated up to 700 ∘C.•To characterize heat transfer, temperature of the solid surface is measured by IR thermography, and droplet temperature is determined by two-color laser-induced fluorescence imaging.•The dynamic LFP (Leidenfrost point) corresponds to the initial wall temperature for which the solid surface is cooled down to the temperature of the spinodal during the impact process.•Above the LFP, fingering boiling is observed while the liquid at the interface with the vapor film remains in a very high level of superheating.•The superheat of the liquid is an essential parameter for the modelling of heat transfer between liquid and solid surface in the film boiling regime. Water droplets impinge on a sapphire wall heated to a temperature ranging from 300∘C to 700∘C. Advanced measurement techniques are used to characterize the thermal processes associated with the drop impact. IR thermography, implemented by coating the impacted surface with an opaque and emissive material in the IR domain, makes it possible to measure the temperature of the solid surface during the impact process. Laser-induced fluorescence imaging is used to characterize the temperature field in the spreading droplet. At the onset of film boiling, the temperature distribution on the solid surface is marked by the formation of a fingering pattern. This latter corresponds to spatial fluctuations in the thickness of the vapor film. When a water droplet hits an overheated wall with a significant impact velocity, the thermal contact is so rapid and intense that the liquid temperature can largely overtake the saturation temperature and reach the spinodal temperature, i.e. the highest temperature at which water can exist in the liquid state. In this situation, experiments show that the dynamic Leidenfrost point is directly linked to the spinodal temperature. A superheating of the liquid by several hundred of ∘C and the subsequent homogeneous nucleation, have to be considered to describe the heat transfer in the film boiling regime.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.120126</doi><orcidid>https://orcid.org/0000-0003-2454-5729</orcidid><orcidid>https://orcid.org/0000-0001-7611-9057</orcidid><orcidid>https://orcid.org/0000-0002-5427-0343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-10, Vol.160, p.120126, Article 120126
issn 0017-9310
1879-2189
language eng
recordid cdi_hal_primary_oai_HAL_hal_03032677v1
source Access via ScienceDirect (Elsevier)
subjects Drop impact
Droplets
Engineering Sciences
Film boiling
Impact velocity
Infrared thermography
Laser induced fluorescence
Leidenfrost temperature
Measurement techniques
Nucleation
Reactive fluid environment
Sapphire
Solid surfaces
Superheating
Surface water
Temperature
Temperature distribution
Thermography
Thickness
Transition boiling
Water drops
title The Leidenfrost transition of water droplets impinging onto a superheated surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Leidenfrost%20transition%20of%20water%20droplets%20impinging%20onto%20a%20superheated%20surface&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Castanet,%20G.&rft.date=2020-10-01&rft.volume=160&rft.spage=120126&rft.pages=120126-&rft.artnum=120126&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.120126&rft_dat=%3Cproquest_hal_p%3E2448962601%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448962601&rft_id=info:pmid/&rft_els_id=S0017931020330623&rfr_iscdi=true