Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy
CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8...
Gespeichert in:
Veröffentlicht in: | Immunity (Cambridge, Mass.) Mass.), 2020-10, Vol.53 (4), p.824-839.e10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 839.e10 |
---|---|
container_issue | 4 |
container_start_page | 824 |
container_title | Immunity (Cambridge, Mass.) |
container_volume | 53 |
creator | Weulersse, Marianne Asrir, Assia Pichler, Andrea C. Lemaitre, Lea Braun, Matthias Carrié, Nadège Joubert, Marie-Véronique Le Moine, Marie Do Souto, Laura Gaud, Guillaume Das, Indrajit Brauns, Elisa Scarlata, Clara M. Morandi, Elena Sundarrajan, Ashmitha Cuisinier, Marine Buisson, Laure Maheo, Sabrina Kassem, Sahar Agesta, Arantxa Pérès, Michaël Verhoeyen, Els Martinez, Alejandra Mazieres, Julien Dupré, Loïc Gossye, Thomas Pancaldi, Vera Guillerey, Camille Ayyoub, Maha Dejean, Anne S. Saoudi, Abdelhadi Goriely, Stanislas Avet-Loiseau, Hervé Bald, Tobias Smyth, Mark J. Martinet, Ludovic |
description | CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226−/− mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
[Display omitted]
•TCR signaling and CD8+ T effector program are altered by the absence of CD226•Dysfunctional CD226neg CD8+ TILs accumulate in human and mouse tumors•Eomes overexpression is involved in CD226 loss by CD8+ TILs•CD226 loss limits the efficacy of immune checkpoint blockade and CD137 agonists.
Through complementary approaches, involving cancer patients’ samples and relevant mouse tumor models, Weulersse et al. reveal that CD8+ T cells in the tumor microenvironment lose expression of the activating receptor CD226 (DNAM-1) in a manner that is Eomes dependent. CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy. |
doi_str_mv | 10.1016/j.immuni.2020.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03030829v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074761320304003</els_id><sourcerecordid>2450759040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-58aadaf408e6cc25c68b3a651edd1a50ce391991684b0c0dfc7caa5b767ce93d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1paT7af1CKoJeWYndkyV-XwOJsmoChUNKz0MrjRstaciV5YX9H_3DlOM2hh6KDNNIzM3rnTZJ3FDIKtPyyz_Q4zkZnOeSQQZMBlC-ScwpNlXJaw8vlXPG0Kik7Sy683wNQXjTwOjljDArGGD1Pfm_tiD69xglNjyaQznpP7EDCA5LWplIFfZRBm5_kOyqcgnWkvc7zMoY-OKmNj3H9mdyTFg8HsjFBp2EeI3Yzm5hsIyBNTzo96uAfy26HQSupTkubVhqFjtwtUmx8dHI6vUleDfLg8e3Tfpn8uNnet7dp9-3rXbvpUsUrCGlRS9nLgUONpVJ5ocp6x2RZUOx7KgtQyBraNLSs-Q4U9IOqlJTFriorhQ3r2WXyaa37IA9icnqU7iSs1OJ204nlDlhcdd4caWQ_ruzk7K85Shej9ioqlgbt7EXOC8pqqAse0Q__oHs7OxOVLBRU0QIOkeIrpVycuMPh-QcUxGKw2IvVYLEYLKAR0eCY9v6p-LwbsX9O-utoBK5WAOPkjhqd8EpjHHKvHaogeqv_3-EP2Yy3qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450759040</pqid></control><display><type>article</type><title>Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weulersse, Marianne ; Asrir, Assia ; Pichler, Andrea C. ; Lemaitre, Lea ; Braun, Matthias ; Carrié, Nadège ; Joubert, Marie-Véronique ; Le Moine, Marie ; Do Souto, Laura ; Gaud, Guillaume ; Das, Indrajit ; Brauns, Elisa ; Scarlata, Clara M. ; Morandi, Elena ; Sundarrajan, Ashmitha ; Cuisinier, Marine ; Buisson, Laure ; Maheo, Sabrina ; Kassem, Sahar ; Agesta, Arantxa ; Pérès, Michaël ; Verhoeyen, Els ; Martinez, Alejandra ; Mazieres, Julien ; Dupré, Loïc ; Gossye, Thomas ; Pancaldi, Vera ; Guillerey, Camille ; Ayyoub, Maha ; Dejean, Anne S. ; Saoudi, Abdelhadi ; Goriely, Stanislas ; Avet-Loiseau, Hervé ; Bald, Tobias ; Smyth, Mark J. ; Martinet, Ludovic</creator><creatorcontrib>Weulersse, Marianne ; Asrir, Assia ; Pichler, Andrea C. ; Lemaitre, Lea ; Braun, Matthias ; Carrié, Nadège ; Joubert, Marie-Véronique ; Le Moine, Marie ; Do Souto, Laura ; Gaud, Guillaume ; Das, Indrajit ; Brauns, Elisa ; Scarlata, Clara M. ; Morandi, Elena ; Sundarrajan, Ashmitha ; Cuisinier, Marine ; Buisson, Laure ; Maheo, Sabrina ; Kassem, Sahar ; Agesta, Arantxa ; Pérès, Michaël ; Verhoeyen, Els ; Martinez, Alejandra ; Mazieres, Julien ; Dupré, Loïc ; Gossye, Thomas ; Pancaldi, Vera ; Guillerey, Camille ; Ayyoub, Maha ; Dejean, Anne S. ; Saoudi, Abdelhadi ; Goriely, Stanislas ; Avet-Loiseau, Hervé ; Bald, Tobias ; Smyth, Mark J. ; Martinet, Ludovic</creatorcontrib><description>CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226−/− mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
[Display omitted]
•TCR signaling and CD8+ T effector program are altered by the absence of CD226•Dysfunctional CD226neg CD8+ TILs accumulate in human and mouse tumors•Eomes overexpression is involved in CD226 loss by CD8+ TILs•CD226 loss limits the efficacy of immune checkpoint blockade and CD137 agonists.
Through complementary approaches, involving cancer patients’ samples and relevant mouse tumor models, Weulersse et al. reveal that CD8+ T cells in the tumor microenvironment lose expression of the activating receptor CD226 (DNAM-1) in a manner that is Eomes dependent. CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2020.09.006</identifier><identifier>PMID: 33053331</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive immunology ; Animals ; Anticancer properties ; Antigens ; Antigens, Differentiation, T-Lymphocyte - immunology ; Antitumor activity ; Bioaccumulation ; Cancer ; Cancer immunotherapy ; CD137 antigen ; CD226 (DNAM-1) ; CD226 antigen ; CD8 antigen ; CD8+ T lymphocytes ; CD8-Positive T-Lymphocytes - immunology ; Cell activation ; Cell adhesion & migration ; Cell cycle ; co-stimulation ; Cytokines ; Eomesodermin (Eomes) ; Gene expression ; Humans ; Immune checkpoint ; immune checkpoint blockade ; Immune Checkpoint Inhibitors - immunology ; Immunology ; Immunotherapy ; Immunotherapy - methods ; LFA-1 antigen ; Life Sciences ; Ligands ; lymphocyte function-associated antigen 1 (LFA-1) ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Neoplasms - immunology ; Neoplasms - therapy ; PD-1 protein ; Peptides ; Peripheral blood ; Programmed Cell Death 1 Receptor - immunology ; Receptors ; Receptors, Antigen, T-Cell - immunology ; Signal Transduction - immunology ; T cell exhaustion ; T cell receptors ; T-Box Domain Proteins - immunology ; TCR signaling ; Transcription ; Transcriptome - immunology ; tumor immune escape ; Tumor Microenvironment - immunology ; Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology ; Tumor necrosis factor-TNF ; Tumors</subject><ispartof>Immunity (Cambridge, Mass.), 2020-10, Vol.53 (4), p.824-839.e10</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-58aadaf408e6cc25c68b3a651edd1a50ce391991684b0c0dfc7caa5b767ce93d3</citedby><cites>FETCH-LOGICAL-c470t-58aadaf408e6cc25c68b3a651edd1a50ce391991684b0c0dfc7caa5b767ce93d3</cites><orcidid>0000-0002-8846-1113 ; 0000-0002-8222-1514 ; 0000-0003-2022-0898 ; 0000-0001-7015-8178 ; 0000-0002-7005-6195 ; 0000-0001-9353-2927 ; 0000-0002-6110-4781 ; 0000-0003-3429-2825 ; 0000-0003-0061-235X ; 0000-0002-5921-7613 ; 0000-0002-0867-7724 ; 0000-0002-7433-624X ; 0000-0002-7633-3536 ; 0000-0002-7278-6503 ; 0000-0003-2459-6331 ; 0000-0002-3050-0140 ; 0000-0001-9224-5491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074761320304003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33053331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03030829$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weulersse, Marianne</creatorcontrib><creatorcontrib>Asrir, Assia</creatorcontrib><creatorcontrib>Pichler, Andrea C.</creatorcontrib><creatorcontrib>Lemaitre, Lea</creatorcontrib><creatorcontrib>Braun, Matthias</creatorcontrib><creatorcontrib>Carrié, Nadège</creatorcontrib><creatorcontrib>Joubert, Marie-Véronique</creatorcontrib><creatorcontrib>Le Moine, Marie</creatorcontrib><creatorcontrib>Do Souto, Laura</creatorcontrib><creatorcontrib>Gaud, Guillaume</creatorcontrib><creatorcontrib>Das, Indrajit</creatorcontrib><creatorcontrib>Brauns, Elisa</creatorcontrib><creatorcontrib>Scarlata, Clara M.</creatorcontrib><creatorcontrib>Morandi, Elena</creatorcontrib><creatorcontrib>Sundarrajan, Ashmitha</creatorcontrib><creatorcontrib>Cuisinier, Marine</creatorcontrib><creatorcontrib>Buisson, Laure</creatorcontrib><creatorcontrib>Maheo, Sabrina</creatorcontrib><creatorcontrib>Kassem, Sahar</creatorcontrib><creatorcontrib>Agesta, Arantxa</creatorcontrib><creatorcontrib>Pérès, Michaël</creatorcontrib><creatorcontrib>Verhoeyen, Els</creatorcontrib><creatorcontrib>Martinez, Alejandra</creatorcontrib><creatorcontrib>Mazieres, Julien</creatorcontrib><creatorcontrib>Dupré, Loïc</creatorcontrib><creatorcontrib>Gossye, Thomas</creatorcontrib><creatorcontrib>Pancaldi, Vera</creatorcontrib><creatorcontrib>Guillerey, Camille</creatorcontrib><creatorcontrib>Ayyoub, Maha</creatorcontrib><creatorcontrib>Dejean, Anne S.</creatorcontrib><creatorcontrib>Saoudi, Abdelhadi</creatorcontrib><creatorcontrib>Goriely, Stanislas</creatorcontrib><creatorcontrib>Avet-Loiseau, Hervé</creatorcontrib><creatorcontrib>Bald, Tobias</creatorcontrib><creatorcontrib>Smyth, Mark J.</creatorcontrib><creatorcontrib>Martinet, Ludovic</creatorcontrib><title>Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226−/− mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
[Display omitted]
•TCR signaling and CD8+ T effector program are altered by the absence of CD226•Dysfunctional CD226neg CD8+ TILs accumulate in human and mouse tumors•Eomes overexpression is involved in CD226 loss by CD8+ TILs•CD226 loss limits the efficacy of immune checkpoint blockade and CD137 agonists.
Through complementary approaches, involving cancer patients’ samples and relevant mouse tumor models, Weulersse et al. reveal that CD8+ T cells in the tumor microenvironment lose expression of the activating receptor CD226 (DNAM-1) in a manner that is Eomes dependent. CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.</description><subject>Adaptive immunology</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antigens</subject><subject>Antigens, Differentiation, T-Lymphocyte - immunology</subject><subject>Antitumor activity</subject><subject>Bioaccumulation</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>CD137 antigen</subject><subject>CD226 (DNAM-1)</subject><subject>CD226 antigen</subject><subject>CD8 antigen</subject><subject>CD8+ T lymphocytes</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell activation</subject><subject>Cell adhesion & migration</subject><subject>Cell cycle</subject><subject>co-stimulation</subject><subject>Cytokines</subject><subject>Eomesodermin (Eomes)</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>immune checkpoint blockade</subject><subject>Immune Checkpoint Inhibitors - immunology</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>LFA-1 antigen</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>lymphocyte function-associated antigen 1 (LFA-1)</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>PD-1 protein</subject><subject>Peptides</subject><subject>Peripheral blood</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Receptors</subject><subject>Receptors, Antigen, T-Cell - immunology</subject><subject>Signal Transduction - immunology</subject><subject>T cell exhaustion</subject><subject>T cell receptors</subject><subject>T-Box Domain Proteins - immunology</subject><subject>TCR signaling</subject><subject>Transcription</subject><subject>Transcriptome - immunology</subject><subject>tumor immune escape</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhk1paT7af1CKoJeWYndkyV-XwOJsmoChUNKz0MrjRstaciV5YX9H_3DlOM2hh6KDNNIzM3rnTZJ3FDIKtPyyz_Q4zkZnOeSQQZMBlC-ScwpNlXJaw8vlXPG0Kik7Sy683wNQXjTwOjljDArGGD1Pfm_tiD69xglNjyaQznpP7EDCA5LWplIFfZRBm5_kOyqcgnWkvc7zMoY-OKmNj3H9mdyTFg8HsjFBp2EeI3Yzm5hsIyBNTzo96uAfy26HQSupTkubVhqFjtwtUmx8dHI6vUleDfLg8e3Tfpn8uNnet7dp9-3rXbvpUsUrCGlRS9nLgUONpVJ5ocp6x2RZUOx7KgtQyBraNLSs-Q4U9IOqlJTFriorhQ3r2WXyaa37IA9icnqU7iSs1OJ204nlDlhcdd4caWQ_ruzk7K85Shej9ioqlgbt7EXOC8pqqAse0Q__oHs7OxOVLBRU0QIOkeIrpVycuMPh-QcUxGKw2IvVYLEYLKAR0eCY9v6p-LwbsX9O-utoBK5WAOPkjhqd8EpjHHKvHaogeqv_3-EP2Yy3qw</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Weulersse, Marianne</creator><creator>Asrir, Assia</creator><creator>Pichler, Andrea C.</creator><creator>Lemaitre, Lea</creator><creator>Braun, Matthias</creator><creator>Carrié, Nadège</creator><creator>Joubert, Marie-Véronique</creator><creator>Le Moine, Marie</creator><creator>Do Souto, Laura</creator><creator>Gaud, Guillaume</creator><creator>Das, Indrajit</creator><creator>Brauns, Elisa</creator><creator>Scarlata, Clara M.</creator><creator>Morandi, Elena</creator><creator>Sundarrajan, Ashmitha</creator><creator>Cuisinier, Marine</creator><creator>Buisson, Laure</creator><creator>Maheo, Sabrina</creator><creator>Kassem, Sahar</creator><creator>Agesta, Arantxa</creator><creator>Pérès, Michaël</creator><creator>Verhoeyen, Els</creator><creator>Martinez, Alejandra</creator><creator>Mazieres, Julien</creator><creator>Dupré, Loïc</creator><creator>Gossye, Thomas</creator><creator>Pancaldi, Vera</creator><creator>Guillerey, Camille</creator><creator>Ayyoub, Maha</creator><creator>Dejean, Anne S.</creator><creator>Saoudi, Abdelhadi</creator><creator>Goriely, Stanislas</creator><creator>Avet-Loiseau, Hervé</creator><creator>Bald, Tobias</creator><creator>Smyth, Mark J.</creator><creator>Martinet, Ludovic</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid><orcidid>https://orcid.org/0000-0002-8222-1514</orcidid><orcidid>https://orcid.org/0000-0003-2022-0898</orcidid><orcidid>https://orcid.org/0000-0001-7015-8178</orcidid><orcidid>https://orcid.org/0000-0002-7005-6195</orcidid><orcidid>https://orcid.org/0000-0001-9353-2927</orcidid><orcidid>https://orcid.org/0000-0002-6110-4781</orcidid><orcidid>https://orcid.org/0000-0003-3429-2825</orcidid><orcidid>https://orcid.org/0000-0003-0061-235X</orcidid><orcidid>https://orcid.org/0000-0002-5921-7613</orcidid><orcidid>https://orcid.org/0000-0002-0867-7724</orcidid><orcidid>https://orcid.org/0000-0002-7433-624X</orcidid><orcidid>https://orcid.org/0000-0002-7633-3536</orcidid><orcidid>https://orcid.org/0000-0002-7278-6503</orcidid><orcidid>https://orcid.org/0000-0003-2459-6331</orcidid><orcidid>https://orcid.org/0000-0002-3050-0140</orcidid><orcidid>https://orcid.org/0000-0001-9224-5491</orcidid></search><sort><creationdate>20201013</creationdate><title>Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy</title><author>Weulersse, Marianne ; Asrir, Assia ; Pichler, Andrea C. ; Lemaitre, Lea ; Braun, Matthias ; Carrié, Nadège ; Joubert, Marie-Véronique ; Le Moine, Marie ; Do Souto, Laura ; Gaud, Guillaume ; Das, Indrajit ; Brauns, Elisa ; Scarlata, Clara M. ; Morandi, Elena ; Sundarrajan, Ashmitha ; Cuisinier, Marine ; Buisson, Laure ; Maheo, Sabrina ; Kassem, Sahar ; Agesta, Arantxa ; Pérès, Michaël ; Verhoeyen, Els ; Martinez, Alejandra ; Mazieres, Julien ; Dupré, Loïc ; Gossye, Thomas ; Pancaldi, Vera ; Guillerey, Camille ; Ayyoub, Maha ; Dejean, Anne S. ; Saoudi, Abdelhadi ; Goriely, Stanislas ; Avet-Loiseau, Hervé ; Bald, Tobias ; Smyth, Mark J. ; Martinet, Ludovic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-58aadaf408e6cc25c68b3a651edd1a50ce391991684b0c0dfc7caa5b767ce93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive immunology</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antigens</topic><topic>Antigens, Differentiation, T-Lymphocyte - immunology</topic><topic>Antitumor activity</topic><topic>Bioaccumulation</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>CD137 antigen</topic><topic>CD226 (DNAM-1)</topic><topic>CD226 antigen</topic><topic>CD8 antigen</topic><topic>CD8+ T lymphocytes</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell activation</topic><topic>Cell adhesion & migration</topic><topic>Cell cycle</topic><topic>co-stimulation</topic><topic>Cytokines</topic><topic>Eomesodermin (Eomes)</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>immune checkpoint blockade</topic><topic>Immune Checkpoint Inhibitors - immunology</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>LFA-1 antigen</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>lymphocyte function-associated antigen 1 (LFA-1)</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>PD-1 protein</topic><topic>Peptides</topic><topic>Peripheral blood</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Receptors</topic><topic>Receptors, Antigen, T-Cell - immunology</topic><topic>Signal Transduction - immunology</topic><topic>T cell exhaustion</topic><topic>T cell receptors</topic><topic>T-Box Domain Proteins - immunology</topic><topic>TCR signaling</topic><topic>Transcription</topic><topic>Transcriptome - immunology</topic><topic>tumor immune escape</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weulersse, Marianne</creatorcontrib><creatorcontrib>Asrir, Assia</creatorcontrib><creatorcontrib>Pichler, Andrea C.</creatorcontrib><creatorcontrib>Lemaitre, Lea</creatorcontrib><creatorcontrib>Braun, Matthias</creatorcontrib><creatorcontrib>Carrié, Nadège</creatorcontrib><creatorcontrib>Joubert, Marie-Véronique</creatorcontrib><creatorcontrib>Le Moine, Marie</creatorcontrib><creatorcontrib>Do Souto, Laura</creatorcontrib><creatorcontrib>Gaud, Guillaume</creatorcontrib><creatorcontrib>Das, Indrajit</creatorcontrib><creatorcontrib>Brauns, Elisa</creatorcontrib><creatorcontrib>Scarlata, Clara M.</creatorcontrib><creatorcontrib>Morandi, Elena</creatorcontrib><creatorcontrib>Sundarrajan, Ashmitha</creatorcontrib><creatorcontrib>Cuisinier, Marine</creatorcontrib><creatorcontrib>Buisson, Laure</creatorcontrib><creatorcontrib>Maheo, Sabrina</creatorcontrib><creatorcontrib>Kassem, Sahar</creatorcontrib><creatorcontrib>Agesta, Arantxa</creatorcontrib><creatorcontrib>Pérès, Michaël</creatorcontrib><creatorcontrib>Verhoeyen, Els</creatorcontrib><creatorcontrib>Martinez, Alejandra</creatorcontrib><creatorcontrib>Mazieres, Julien</creatorcontrib><creatorcontrib>Dupré, Loïc</creatorcontrib><creatorcontrib>Gossye, Thomas</creatorcontrib><creatorcontrib>Pancaldi, Vera</creatorcontrib><creatorcontrib>Guillerey, Camille</creatorcontrib><creatorcontrib>Ayyoub, Maha</creatorcontrib><creatorcontrib>Dejean, Anne S.</creatorcontrib><creatorcontrib>Saoudi, Abdelhadi</creatorcontrib><creatorcontrib>Goriely, Stanislas</creatorcontrib><creatorcontrib>Avet-Loiseau, Hervé</creatorcontrib><creatorcontrib>Bald, Tobias</creatorcontrib><creatorcontrib>Smyth, Mark J.</creatorcontrib><creatorcontrib>Martinet, Ludovic</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weulersse, Marianne</au><au>Asrir, Assia</au><au>Pichler, Andrea C.</au><au>Lemaitre, Lea</au><au>Braun, Matthias</au><au>Carrié, Nadège</au><au>Joubert, Marie-Véronique</au><au>Le Moine, Marie</au><au>Do Souto, Laura</au><au>Gaud, Guillaume</au><au>Das, Indrajit</au><au>Brauns, Elisa</au><au>Scarlata, Clara M.</au><au>Morandi, Elena</au><au>Sundarrajan, Ashmitha</au><au>Cuisinier, Marine</au><au>Buisson, Laure</au><au>Maheo, Sabrina</au><au>Kassem, Sahar</au><au>Agesta, Arantxa</au><au>Pérès, Michaël</au><au>Verhoeyen, Els</au><au>Martinez, Alejandra</au><au>Mazieres, Julien</au><au>Dupré, Loïc</au><au>Gossye, Thomas</au><au>Pancaldi, Vera</au><au>Guillerey, Camille</au><au>Ayyoub, Maha</au><au>Dejean, Anne S.</au><au>Saoudi, Abdelhadi</au><au>Goriely, Stanislas</au><au>Avet-Loiseau, Hervé</au><au>Bald, Tobias</au><au>Smyth, Mark J.</au><au>Martinet, Ludovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>53</volume><issue>4</issue><spage>824</spage><epage>839.e10</epage><pages>824-839.e10</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226−/− mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
[Display omitted]
•TCR signaling and CD8+ T effector program are altered by the absence of CD226•Dysfunctional CD226neg CD8+ TILs accumulate in human and mouse tumors•Eomes overexpression is involved in CD226 loss by CD8+ TILs•CD226 loss limits the efficacy of immune checkpoint blockade and CD137 agonists.
Through complementary approaches, involving cancer patients’ samples and relevant mouse tumor models, Weulersse et al. reveal that CD8+ T cells in the tumor microenvironment lose expression of the activating receptor CD226 (DNAM-1) in a manner that is Eomes dependent. CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33053331</pmid><doi>10.1016/j.immuni.2020.09.006</doi><orcidid>https://orcid.org/0000-0002-8846-1113</orcidid><orcidid>https://orcid.org/0000-0002-8222-1514</orcidid><orcidid>https://orcid.org/0000-0003-2022-0898</orcidid><orcidid>https://orcid.org/0000-0001-7015-8178</orcidid><orcidid>https://orcid.org/0000-0002-7005-6195</orcidid><orcidid>https://orcid.org/0000-0001-9353-2927</orcidid><orcidid>https://orcid.org/0000-0002-6110-4781</orcidid><orcidid>https://orcid.org/0000-0003-3429-2825</orcidid><orcidid>https://orcid.org/0000-0003-0061-235X</orcidid><orcidid>https://orcid.org/0000-0002-5921-7613</orcidid><orcidid>https://orcid.org/0000-0002-0867-7724</orcidid><orcidid>https://orcid.org/0000-0002-7433-624X</orcidid><orcidid>https://orcid.org/0000-0002-7633-3536</orcidid><orcidid>https://orcid.org/0000-0002-7278-6503</orcidid><orcidid>https://orcid.org/0000-0003-2459-6331</orcidid><orcidid>https://orcid.org/0000-0002-3050-0140</orcidid><orcidid>https://orcid.org/0000-0001-9224-5491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7613 |
ispartof | Immunity (Cambridge, Mass.), 2020-10, Vol.53 (4), p.824-839.e10 |
issn | 1074-7613 1097-4180 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03030829v1 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive immunology Animals Anticancer properties Antigens Antigens, Differentiation, T-Lymphocyte - immunology Antitumor activity Bioaccumulation Cancer Cancer immunotherapy CD137 antigen CD226 (DNAM-1) CD226 antigen CD8 antigen CD8+ T lymphocytes CD8-Positive T-Lymphocytes - immunology Cell activation Cell adhesion & migration Cell cycle co-stimulation Cytokines Eomesodermin (Eomes) Gene expression Humans Immune checkpoint immune checkpoint blockade Immune Checkpoint Inhibitors - immunology Immunology Immunotherapy Immunotherapy - methods LFA-1 antigen Life Sciences Ligands lymphocyte function-associated antigen 1 (LFA-1) Lymphocytes Lymphocytes T Mice Mice, Inbred C57BL Neoplasms - immunology Neoplasms - therapy PD-1 protein Peptides Peripheral blood Programmed Cell Death 1 Receptor - immunology Receptors Receptors, Antigen, T-Cell - immunology Signal Transduction - immunology T cell exhaustion T cell receptors T-Box Domain Proteins - immunology TCR signaling Transcription Transcriptome - immunology tumor immune escape Tumor Microenvironment - immunology Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology Tumor necrosis factor-TNF Tumors |
title | Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eomes-Dependent%20Loss%20of%20the%20Co-activating%20Receptor%20CD226%20Restrains%20CD8+%20T%20Cell%20Anti-tumor%20Functions%20and%20Limits%20the%20Efficacy%20of%20Cancer%20Immunotherapy&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Weulersse,%20Marianne&rft.date=2020-10-13&rft.volume=53&rft.issue=4&rft.spage=824&rft.epage=839.e10&rft.pages=824-839.e10&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2020.09.006&rft_dat=%3Cproquest_hal_p%3E2450759040%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450759040&rft_id=info:pmid/33053331&rft_els_id=S1074761320304003&rfr_iscdi=true |