A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design N...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-11, Vol.9 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Yan, Guochun Reeves, Kyle Foix, Dominique Li, Zhujie Cometto, Claudio Mariyappan, Sathiya Salanne, Mathieu Tarascon, Jean‐Marie |
description | The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.
Electrolyte additives to achieve a thin, stable solid electrolyte interface (SEI) in sodium ion batteries are explored. The derived electrolyte using 1 m NaPF6 in EC‐PC with additives vinylene carbonate (VC), succinonitrile (SN), 1,3‐propane sultone (PS), and sodium difluoro(oxalate)borate (NaODFB) leads to stable long cycling performance even at high temperature (55 °C) and reduced self‐discharge on long term storage at 100% state of charge (SOC). |
doi_str_mv | 10.1002/aenm.201901431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03028024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312176259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4961-f0215553dfe54594519289a7a7069e3bd9e4a9342e374f9668820ef1611b695b3</originalsourceid><addsrcrecordid>eNqFkc1OwkAUhSdGEwmydT2JKxfF-evPLJGAkCCagOvJUG6hpO3gTCvpzkfwGX0S29Tg0ru5N3O_c3InB6FbSoaUEPagociHjFBJqOD0AvVoQIUXRIJcnmfOrtHAuQNpSkhKOO8hO8JLOOFJBnFpTVaXgKfG5lWmy9QUODEWryCubFrs8Czd7fEa8iNYXVYW8LiOs3ahiy1elcbqHeBXsI0o10UMDpsEL_X359e8sXrUZQk2BXeDrhKdORj89j56m07W45m3eHmaj0cLLxYyoF5CGPV9n28T8IUvhU8li6QOdUgCCXyzlSC05IIBD0UigyCKGIGk-SvdBNLf8D6673z3OlNHm-ba1sroVM1GC9W-EU5YRJj4oA1717FHa94rcKU6mMoWzXmKccpoGDBfNtSwo2JrnLOQnG0pUW0Mqo1BnWNoBLITnNIM6n9oNZosn_-0P6txirk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312176259</pqid></control><display><type>article</type><title>A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Yan, Guochun ; Reeves, Kyle ; Foix, Dominique ; Li, Zhujie ; Cometto, Claudio ; Mariyappan, Sathiya ; Salanne, Mathieu ; Tarascon, Jean‐Marie</creator><creatorcontrib>Yan, Guochun ; Reeves, Kyle ; Foix, Dominique ; Li, Zhujie ; Cometto, Claudio ; Mariyappan, Sathiya ; Salanne, Mathieu ; Tarascon, Jean‐Marie</creatorcontrib><description>The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.
Electrolyte additives to achieve a thin, stable solid electrolyte interface (SEI) in sodium ion batteries are explored. The derived electrolyte using 1 m NaPF6 in EC‐PC with additives vinylene carbonate (VC), succinonitrile (SN), 1,3‐propane sultone (PS), and sodium difluoro(oxalate)borate (NaODFB) leads to stable long cycling performance even at high temperature (55 °C) and reduced self‐discharge on long term storage at 100% state of charge (SOC).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201901431</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; Chemical Sciences ; Elastomers ; electrolyte additives ; Electrolytes ; Electrolytic cells ; Flux density ; High temperature ; high temperature performance ; Lithium-ion batteries ; Organic chemistry ; Photoelectrons ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; solid electrolyte interface ; Solid electrolytes ; Storage batteries ; Succinonitrile</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (41), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4961-f0215553dfe54594519289a7a7069e3bd9e4a9342e374f9668820ef1611b695b3</citedby><cites>FETCH-LOGICAL-c4961-f0215553dfe54594519289a7a7069e3bd9e4a9342e374f9668820ef1611b695b3</cites><orcidid>0000-0003-2851-5906 ; 0000-0002-7059-6845 ; 0000-0001-5133-5749 ; 0000-0002-1338-9241 ; 0000-0002-1753-491X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201901431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201901431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03028024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Guochun</creatorcontrib><creatorcontrib>Reeves, Kyle</creatorcontrib><creatorcontrib>Foix, Dominique</creatorcontrib><creatorcontrib>Li, Zhujie</creatorcontrib><creatorcontrib>Cometto, Claudio</creatorcontrib><creatorcontrib>Mariyappan, Sathiya</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><creatorcontrib>Tarascon, Jean‐Marie</creatorcontrib><title>A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries</title><title>Advanced energy materials</title><description>The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.
Electrolyte additives to achieve a thin, stable solid electrolyte interface (SEI) in sodium ion batteries are explored. The derived electrolyte using 1 m NaPF6 in EC‐PC with additives vinylene carbonate (VC), succinonitrile (SN), 1,3‐propane sultone (PS), and sodium difluoro(oxalate)borate (NaODFB) leads to stable long cycling performance even at high temperature (55 °C) and reduced self‐discharge on long term storage at 100% state of charge (SOC).</description><subject>Additives</subject><subject>Chemical Sciences</subject><subject>Elastomers</subject><subject>electrolyte additives</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>High temperature</subject><subject>high temperature performance</subject><subject>Lithium-ion batteries</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>solid electrolyte interface</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><subject>Succinonitrile</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OwkAUhSdGEwmydT2JKxfF-evPLJGAkCCagOvJUG6hpO3gTCvpzkfwGX0S29Tg0ru5N3O_c3InB6FbSoaUEPagociHjFBJqOD0AvVoQIUXRIJcnmfOrtHAuQNpSkhKOO8hO8JLOOFJBnFpTVaXgKfG5lWmy9QUODEWryCubFrs8Czd7fEa8iNYXVYW8LiOs3ahiy1elcbqHeBXsI0o10UMDpsEL_X359e8sXrUZQk2BXeDrhKdORj89j56m07W45m3eHmaj0cLLxYyoF5CGPV9n28T8IUvhU8li6QOdUgCCXyzlSC05IIBD0UigyCKGIGk-SvdBNLf8D6673z3OlNHm-ba1sroVM1GC9W-EU5YRJj4oA1717FHa94rcKU6mMoWzXmKccpoGDBfNtSwo2JrnLOQnG0pUW0Mqo1BnWNoBLITnNIM6n9oNZosn_-0P6txirk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yan, Guochun</creator><creator>Reeves, Kyle</creator><creator>Foix, Dominique</creator><creator>Li, Zhujie</creator><creator>Cometto, Claudio</creator><creator>Mariyappan, Sathiya</creator><creator>Salanne, Mathieu</creator><creator>Tarascon, Jean‐Marie</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2851-5906</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0001-5133-5749</orcidid><orcidid>https://orcid.org/0000-0002-1338-9241</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid></search><sort><creationdate>20191101</creationdate><title>A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries</title><author>Yan, Guochun ; Reeves, Kyle ; Foix, Dominique ; Li, Zhujie ; Cometto, Claudio ; Mariyappan, Sathiya ; Salanne, Mathieu ; Tarascon, Jean‐Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4961-f0215553dfe54594519289a7a7069e3bd9e4a9342e374f9668820ef1611b695b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additives</topic><topic>Chemical Sciences</topic><topic>Elastomers</topic><topic>electrolyte additives</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>High temperature</topic><topic>high temperature performance</topic><topic>Lithium-ion batteries</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>solid electrolyte interface</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><topic>Succinonitrile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Guochun</creatorcontrib><creatorcontrib>Reeves, Kyle</creatorcontrib><creatorcontrib>Foix, Dominique</creatorcontrib><creatorcontrib>Li, Zhujie</creatorcontrib><creatorcontrib>Cometto, Claudio</creatorcontrib><creatorcontrib>Mariyappan, Sathiya</creatorcontrib><creatorcontrib>Salanne, Mathieu</creatorcontrib><creatorcontrib>Tarascon, Jean‐Marie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Guochun</au><au>Reeves, Kyle</au><au>Foix, Dominique</au><au>Li, Zhujie</au><au>Cometto, Claudio</au><au>Mariyappan, Sathiya</au><au>Salanne, Mathieu</au><au>Tarascon, Jean‐Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>41</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.
Electrolyte additives to achieve a thin, stable solid electrolyte interface (SEI) in sodium ion batteries are explored. The derived electrolyte using 1 m NaPF6 in EC‐PC with additives vinylene carbonate (VC), succinonitrile (SN), 1,3‐propane sultone (PS), and sodium difluoro(oxalate)borate (NaODFB) leads to stable long cycling performance even at high temperature (55 °C) and reduced self‐discharge on long term storage at 100% state of charge (SOC).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201901431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2851-5906</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0001-5133-5749</orcidid><orcidid>https://orcid.org/0000-0002-1338-9241</orcidid><orcidid>https://orcid.org/0000-0002-1753-491X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-11, Vol.9 (41), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03028024v1 |
source | Wiley Online Library All Journals |
subjects | Additives Chemical Sciences Elastomers electrolyte additives Electrolytes Electrolytic cells Flux density High temperature high temperature performance Lithium-ion batteries Organic chemistry Photoelectrons Rechargeable batteries Sodium Sodium-ion batteries solid electrolyte interface Solid electrolytes Storage batteries Succinonitrile |
title | A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Electrolyte%20Formulation%20for%20Securing%20High%20Temperature%20Cycling%20and%20Storage%20Performances%20of%20Na%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Yan,%20Guochun&rft.date=2019-11-01&rft.volume=9&rft.issue=41&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201901431&rft_dat=%3Cproquest_hal_p%3E2312176259%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312176259&rft_id=info:pmid/&rfr_iscdi=true |