Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7

Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048
Hauptverfasser: Kumar-Ventrapati, Pavan, Misra, Shantanu, Delaizir, Gaëlle, Dauscher, Anne, Lenoir, Bertrand, Candolfi, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14048
container_issue 40
container_start_page 14037
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Kumar-Ventrapati, Pavan
Misra, Shantanu
Delaizir, Gaëlle
Dauscher, Anne
Lenoir, Bertrand
Candolfi, Christophe
description Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.
doi_str_mv 10.1039/d0tc03935g
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03027391v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453022070</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c5ed97b3c531427f7a17e7787be158f5d3bcc20df120f9ae6543de0c6902857f3</originalsourceid><addsrcrecordid>eNo9j8FOwzAQRC0EElXphS-wxIlDYG3HcXIsFbRIkTgUDpwiJ9m0qZI42A60f8CZT-RLCCpiL7MaPY1mCLlkcMNAJLcl-GJUITcnZMJBQqCkCE__fx6dk5lzOxgvZlEcJRPympqPwGPbo9V-sEi91Z3rjfW0t2Z0fY2Omop2gT_0SBt9QIsl3ZrWNGZjBkcL0_Zm6EpH7-r4-_Nrv873a1QX5KzSjcPZn07Jy8P982IVpE_Lx8U8DTacgw8KiWWiclFIwUKuKqWZQqVilSOTcSVLkRcFh7JiHKpEYyRDUSIUUQI8lqoSU3J9zN3qJutt3Wp7yIyus9U8zX49EMCVSNg7G9mrIztuexvQ-WxnBtuN9TIeypHjoED8AGbZY80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453022070</pqid></control><display><type>article</type><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</creator><creatorcontrib>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</creatorcontrib><description>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc03935g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antimony ; Bilayers ; Bismuth ; Chalcogenides ; Chemical Physics ; Condensed Matter ; Crystal defects ; Crystal structure ; Electrical resistivity ; Electronic properties ; Energy conversion ; Figure of merit ; Homology ; Low temperature ; Materials Science ; Metalloids ; Photovoltaic cells ; Physics ; Room temperature ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Unit cell</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1248-5354 ; 0000-0001-9631-4925 ; 0000-0002-5857-3421 ; 0000-0003-3419-4096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03027391$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar-Ventrapati, Pavan</creatorcontrib><creatorcontrib>Misra, Shantanu</creatorcontrib><creatorcontrib>Delaizir, Gaëlle</creatorcontrib><creatorcontrib>Dauscher, Anne</creatorcontrib><creatorcontrib>Lenoir, Bertrand</creatorcontrib><creatorcontrib>Candolfi, Christophe</creatorcontrib><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</description><subject>Antimony</subject><subject>Bilayers</subject><subject>Bismuth</subject><subject>Chalcogenides</subject><subject>Chemical Physics</subject><subject>Condensed Matter</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Electrical resistivity</subject><subject>Electronic properties</subject><subject>Energy conversion</subject><subject>Figure of merit</subject><subject>Homology</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metalloids</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Unit cell</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j8FOwzAQRC0EElXphS-wxIlDYG3HcXIsFbRIkTgUDpwiJ9m0qZI42A60f8CZT-RLCCpiL7MaPY1mCLlkcMNAJLcl-GJUITcnZMJBQqCkCE__fx6dk5lzOxgvZlEcJRPympqPwGPbo9V-sEi91Z3rjfW0t2Z0fY2Omop2gT_0SBt9QIsl3ZrWNGZjBkcL0_Zm6EpH7-r4-_Nrv873a1QX5KzSjcPZn07Jy8P982IVpE_Lx8U8DTacgw8KiWWiclFIwUKuKqWZQqVilSOTcSVLkRcFh7JiHKpEYyRDUSIUUQI8lqoSU3J9zN3qJutt3Wp7yIyus9U8zX49EMCVSNg7G9mrIztuexvQ-WxnBtuN9TIeypHjoED8AGbZY80</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kumar-Ventrapati, Pavan</creator><creator>Misra, Shantanu</creator><creator>Delaizir, Gaëlle</creator><creator>Dauscher, Anne</creator><creator>Lenoir, Bertrand</creator><creator>Candolfi, Christophe</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1248-5354</orcidid><orcidid>https://orcid.org/0000-0001-9631-4925</orcidid><orcidid>https://orcid.org/0000-0002-5857-3421</orcidid><orcidid>https://orcid.org/0000-0003-3419-4096</orcidid></search><sort><creationdate>20200101</creationdate><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><author>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c5ed97b3c531427f7a17e7787be158f5d3bcc20df120f9ae6543de0c6902857f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antimony</topic><topic>Bilayers</topic><topic>Bismuth</topic><topic>Chalcogenides</topic><topic>Chemical Physics</topic><topic>Condensed Matter</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Electrical resistivity</topic><topic>Electronic properties</topic><topic>Energy conversion</topic><topic>Figure of merit</topic><topic>Homology</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metalloids</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar-Ventrapati, Pavan</creatorcontrib><creatorcontrib>Misra, Shantanu</creatorcontrib><creatorcontrib>Delaizir, Gaëlle</creatorcontrib><creatorcontrib>Dauscher, Anne</creatorcontrib><creatorcontrib>Lenoir, Bertrand</creatorcontrib><creatorcontrib>Candolfi, Christophe</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar-Ventrapati, Pavan</au><au>Misra, Shantanu</au><au>Delaizir, Gaëlle</au><au>Dauscher, Anne</au><au>Lenoir, Bertrand</au><au>Candolfi, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>40</issue><spage>14037</spage><epage>14048</epage><pages>14037-14048</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc03935g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1248-5354</orcidid><orcidid>https://orcid.org/0000-0001-9631-4925</orcidid><orcidid>https://orcid.org/0000-0002-5857-3421</orcidid><orcidid>https://orcid.org/0000-0003-3419-4096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048
issn 2050-7526
2050-7534
language eng
recordid cdi_hal_primary_oai_HAL_hal_03027391v1
source Royal Society Of Chemistry Journals 2008-
subjects Antimony
Bilayers
Bismuth
Chalcogenides
Chemical Physics
Condensed Matter
Crystal defects
Crystal structure
Electrical resistivity
Electronic properties
Energy conversion
Figure of merit
Homology
Low temperature
Materials Science
Metalloids
Photovoltaic cells
Physics
Room temperature
Thermal conductivity
Thermoelectricity
Transport properties
Unit cell
title Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20transport%20properties%20of%20n-type%20layered%20homologous%20compounds%20Bi8%E2%88%92xSbxSe7&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Kumar-Ventrapati,%20Pavan&rft.date=2020-01-01&rft.volume=8&rft.issue=40&rft.spage=14037&rft.epage=14048&rft.pages=14037-14048&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc03935g&rft_dat=%3Cproquest_hal_p%3E2453022070%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453022070&rft_id=info:pmid/&rfr_iscdi=true