Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7
Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14048 |
---|---|
container_issue | 40 |
container_start_page | 14037 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Kumar-Ventrapati, Pavan Misra, Shantanu Delaizir, Gaëlle Dauscher, Anne Lenoir, Bertrand Candolfi, Christophe |
description | Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications. |
doi_str_mv | 10.1039/d0tc03935g |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03027391v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453022070</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c5ed97b3c531427f7a17e7787be158f5d3bcc20df120f9ae6543de0c6902857f3</originalsourceid><addsrcrecordid>eNo9j8FOwzAQRC0EElXphS-wxIlDYG3HcXIsFbRIkTgUDpwiJ9m0qZI42A60f8CZT-RLCCpiL7MaPY1mCLlkcMNAJLcl-GJUITcnZMJBQqCkCE__fx6dk5lzOxgvZlEcJRPympqPwGPbo9V-sEi91Z3rjfW0t2Z0fY2Omop2gT_0SBt9QIsl3ZrWNGZjBkcL0_Zm6EpH7-r4-_Nrv873a1QX5KzSjcPZn07Jy8P982IVpE_Lx8U8DTacgw8KiWWiclFIwUKuKqWZQqVilSOTcSVLkRcFh7JiHKpEYyRDUSIUUQI8lqoSU3J9zN3qJutt3Wp7yIyus9U8zX49EMCVSNg7G9mrIztuexvQ-WxnBtuN9TIeypHjoED8AGbZY80</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453022070</pqid></control><display><type>article</type><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</creator><creatorcontrib>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</creatorcontrib><description>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc03935g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antimony ; Bilayers ; Bismuth ; Chalcogenides ; Chemical Physics ; Condensed Matter ; Crystal defects ; Crystal structure ; Electrical resistivity ; Electronic properties ; Energy conversion ; Figure of merit ; Homology ; Low temperature ; Materials Science ; Metalloids ; Photovoltaic cells ; Physics ; Room temperature ; Thermal conductivity ; Thermoelectricity ; Transport properties ; Unit cell</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1248-5354 ; 0000-0001-9631-4925 ; 0000-0002-5857-3421 ; 0000-0003-3419-4096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03027391$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar-Ventrapati, Pavan</creatorcontrib><creatorcontrib>Misra, Shantanu</creatorcontrib><creatorcontrib>Delaizir, Gaëlle</creatorcontrib><creatorcontrib>Dauscher, Anne</creatorcontrib><creatorcontrib>Lenoir, Bertrand</creatorcontrib><creatorcontrib>Candolfi, Christophe</creatorcontrib><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</description><subject>Antimony</subject><subject>Bilayers</subject><subject>Bismuth</subject><subject>Chalcogenides</subject><subject>Chemical Physics</subject><subject>Condensed Matter</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Electrical resistivity</subject><subject>Electronic properties</subject><subject>Energy conversion</subject><subject>Figure of merit</subject><subject>Homology</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metalloids</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Unit cell</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j8FOwzAQRC0EElXphS-wxIlDYG3HcXIsFbRIkTgUDpwiJ9m0qZI42A60f8CZT-RLCCpiL7MaPY1mCLlkcMNAJLcl-GJUITcnZMJBQqCkCE__fx6dk5lzOxgvZlEcJRPympqPwGPbo9V-sEi91Z3rjfW0t2Z0fY2Omop2gT_0SBt9QIsl3ZrWNGZjBkcL0_Zm6EpH7-r4-_Nrv873a1QX5KzSjcPZn07Jy8P982IVpE_Lx8U8DTacgw8KiWWiclFIwUKuKqWZQqVilSOTcSVLkRcFh7JiHKpEYyRDUSIUUQI8lqoSU3J9zN3qJutt3Wp7yIyus9U8zX49EMCVSNg7G9mrIztuexvQ-WxnBtuN9TIeypHjoED8AGbZY80</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Kumar-Ventrapati, Pavan</creator><creator>Misra, Shantanu</creator><creator>Delaizir, Gaëlle</creator><creator>Dauscher, Anne</creator><creator>Lenoir, Bertrand</creator><creator>Candolfi, Christophe</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1248-5354</orcidid><orcidid>https://orcid.org/0000-0001-9631-4925</orcidid><orcidid>https://orcid.org/0000-0002-5857-3421</orcidid><orcidid>https://orcid.org/0000-0003-3419-4096</orcidid></search><sort><creationdate>20200101</creationdate><title>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</title><author>Kumar-Ventrapati, Pavan ; Misra, Shantanu ; Delaizir, Gaëlle ; Dauscher, Anne ; Lenoir, Bertrand ; Candolfi, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c5ed97b3c531427f7a17e7787be158f5d3bcc20df120f9ae6543de0c6902857f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antimony</topic><topic>Bilayers</topic><topic>Bismuth</topic><topic>Chalcogenides</topic><topic>Chemical Physics</topic><topic>Condensed Matter</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Electrical resistivity</topic><topic>Electronic properties</topic><topic>Energy conversion</topic><topic>Figure of merit</topic><topic>Homology</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metalloids</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar-Ventrapati, Pavan</creatorcontrib><creatorcontrib>Misra, Shantanu</creatorcontrib><creatorcontrib>Delaizir, Gaëlle</creatorcontrib><creatorcontrib>Dauscher, Anne</creatorcontrib><creatorcontrib>Lenoir, Bertrand</creatorcontrib><creatorcontrib>Candolfi, Christophe</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar-Ventrapati, Pavan</au><au>Misra, Shantanu</au><au>Delaizir, Gaëlle</au><au>Dauscher, Anne</au><au>Lenoir, Bertrand</au><au>Candolfi, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>40</issue><spage>14037</spage><epage>14048</epage><pages>14037-14048</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Chalcogenide semiconductors and semimetals are a historical fertile class of materials for discovering novel compounds for energy conversion applications, such as photovoltaic cells or thermoelectric devices. Here, we report on a detailed investigation on the low-temperature transport properties (5–300 K) of n-type series Bi8−xSbxSe7 (0 ≤ x ≤ 2.4), the thermoelectric performances of which can be optimized around 300 K. The complex layered crystal structure, built up by Bi bilayers and quintuple Bi–Se layers stacked perpendicular to the c axis of the trigonal unit cell, gives rise to very low lattice thermal conductivity κL values in the order of 0.6 W m−1 K−1 at 300 K. Upon cooling, κL(T) exhibits a crystal-like behavior with a well-defined dielectric maximum. Despite Sb and Bi being isovalent, both the thermopower α and the electrical resistivity ρ vary upon increasing the Sb content, possibly due to the variations in the nature and concentration of the native defects. Our results indicate the existence of two substitutional ranges, in which the evolution of the electronic properties with x is not equivalent. Combined with the poor ability of these materials to conduct heat, the high power factors, optimized for x = 1.6, result in a maximum dimensionless thermoelectric figure of merit ZT as high as 0.40 at 300 K, making these compounds competitive among n-type thermoelectric chalcogenides for near-room-temperature thermoelectric applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc03935g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1248-5354</orcidid><orcidid>https://orcid.org/0000-0001-9631-4925</orcidid><orcidid>https://orcid.org/0000-0002-5857-3421</orcidid><orcidid>https://orcid.org/0000-0003-3419-4096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-01, Vol.8 (40), p.14037-14048 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03027391v1 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Antimony Bilayers Bismuth Chalcogenides Chemical Physics Condensed Matter Crystal defects Crystal structure Electrical resistivity Electronic properties Energy conversion Figure of merit Homology Low temperature Materials Science Metalloids Photovoltaic cells Physics Room temperature Thermal conductivity Thermoelectricity Transport properties Unit cell |
title | Low-temperature transport properties of n-type layered homologous compounds Bi8−xSbxSe7 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20transport%20properties%20of%20n-type%20layered%20homologous%20compounds%20Bi8%E2%88%92xSbxSe7&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Kumar-Ventrapati,%20Pavan&rft.date=2020-01-01&rft.volume=8&rft.issue=40&rft.spage=14037&rft.epage=14048&rft.pages=14037-14048&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc03935g&rft_dat=%3Cproquest_hal_p%3E2453022070%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453022070&rft_id=info:pmid/&rfr_iscdi=true |