Thermal convection in three-dimensional fractured porous media

Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-01, Vol.97 (1-1), p.013106-013106, Article 013106
Hauptverfasser: Mezon, C, Mourzenko, V V, Thovert, J-F, Antoine, R, Fontaine, F, Finizola, A, Adler, P M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013106
container_issue 1-1
container_start_page 013106
container_title Physical review. E
container_volume 97
creator Mezon, C
Mourzenko, V V
Thovert, J-F
Antoine, R
Fontaine, F
Finizola, A
Adler, P M
description Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.
doi_str_mv 10.1103/PhysRevE.97.013106
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03025954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2003042464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-503b0fac9a79506dc9da3d795dfd39199a12ff7acd1cf0f687f14a986cf3e2893</originalsourceid><addsrcrecordid>eNo9kMlqAkEQhpuQEMX4AjmEOSaHMdXLLH0JiJgYEBKCOTdtL8yEWUz3jODb2zLqqYqqr36KD6FHDDOMgb5-Fwf_Y_bLGc9mgCmG9AaNCcsgBkjo7bVnyQhNvf8DAJwCzzC5RyPCGctpzsbobVMYV8sqUm2zN6or2yYqm6grnDGxLmvT-DAKe-uk6npndLRrXdv7qDa6lA_ozsrKm-m5TtDv-3KzWMXrr4_PxXwdK5rjLk6AbsFKxWXGE0i14lpSHXptNeWYc4mJtZlUGisLNs0zi5nkeaosNSTndIJehtxCVmLnylq6g2hlKVbztTjNgAJJeML2OLDPA7tz7X9vfCfq0itTVbIx4XFBIMCMsJQFlAyocq33zthrNgZx0iwumgXPxKA5HD2d8_ttkHA9uUilR2bneYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003042464</pqid></control><display><type>article</type><title>Thermal convection in three-dimensional fractured porous media</title><source>American Physical Society Journals</source><creator>Mezon, C ; Mourzenko, V V ; Thovert, J-F ; Antoine, R ; Fontaine, F ; Finizola, A ; Adler, P M</creator><creatorcontrib>Mezon, C ; Mourzenko, V V ; Thovert, J-F ; Antoine, R ; Fontaine, F ; Finizola, A ; Adler, P M</creatorcontrib><description>Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.97.013106</identifier><identifier>PMID: 29448384</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Earth Sciences ; Fluid mechanics ; Geophysics ; Mechanics ; Physics ; Sciences of the Universe ; Thermics</subject><ispartof>Physical review. E, 2018-01, Vol.97 (1-1), p.013106-013106, Article 013106</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-503b0fac9a79506dc9da3d795dfd39199a12ff7acd1cf0f687f14a986cf3e2893</citedby><cites>FETCH-LOGICAL-c381t-503b0fac9a79506dc9da3d795dfd39199a12ff7acd1cf0f687f14a986cf3e2893</cites><orcidid>0000-0002-9164-0630 ; 0000-0002-0625-9713 ; 0000-0003-3019-3790 ; 0000-0002-5083-7349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29448384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03025954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mezon, C</creatorcontrib><creatorcontrib>Mourzenko, V V</creatorcontrib><creatorcontrib>Thovert, J-F</creatorcontrib><creatorcontrib>Antoine, R</creatorcontrib><creatorcontrib>Fontaine, F</creatorcontrib><creatorcontrib>Finizola, A</creatorcontrib><creatorcontrib>Adler, P M</creatorcontrib><title>Thermal convection in three-dimensional fractured porous media</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.</description><subject>Earth Sciences</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Thermics</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMlqAkEQhpuQEMX4AjmEOSaHMdXLLH0JiJgYEBKCOTdtL8yEWUz3jODb2zLqqYqqr36KD6FHDDOMgb5-Fwf_Y_bLGc9mgCmG9AaNCcsgBkjo7bVnyQhNvf8DAJwCzzC5RyPCGctpzsbobVMYV8sqUm2zN6or2yYqm6grnDGxLmvT-DAKe-uk6npndLRrXdv7qDa6lA_ozsrKm-m5TtDv-3KzWMXrr4_PxXwdK5rjLk6AbsFKxWXGE0i14lpSHXptNeWYc4mJtZlUGisLNs0zi5nkeaosNSTndIJehtxCVmLnylq6g2hlKVbztTjNgAJJeML2OLDPA7tz7X9vfCfq0itTVbIx4XFBIMCMsJQFlAyocq33zthrNgZx0iwumgXPxKA5HD2d8_ttkHA9uUilR2bneYI</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Mezon, C</creator><creator>Mourzenko, V V</creator><creator>Thovert, J-F</creator><creator>Antoine, R</creator><creator>Fontaine, F</creator><creator>Finizola, A</creator><creator>Adler, P M</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9164-0630</orcidid><orcidid>https://orcid.org/0000-0002-0625-9713</orcidid><orcidid>https://orcid.org/0000-0003-3019-3790</orcidid><orcidid>https://orcid.org/0000-0002-5083-7349</orcidid></search><sort><creationdate>201801</creationdate><title>Thermal convection in three-dimensional fractured porous media</title><author>Mezon, C ; Mourzenko, V V ; Thovert, J-F ; Antoine, R ; Fontaine, F ; Finizola, A ; Adler, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-503b0fac9a79506dc9da3d795dfd39199a12ff7acd1cf0f687f14a986cf3e2893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Earth Sciences</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezon, C</creatorcontrib><creatorcontrib>Mourzenko, V V</creatorcontrib><creatorcontrib>Thovert, J-F</creatorcontrib><creatorcontrib>Antoine, R</creatorcontrib><creatorcontrib>Fontaine, F</creatorcontrib><creatorcontrib>Finizola, A</creatorcontrib><creatorcontrib>Adler, P M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezon, C</au><au>Mourzenko, V V</au><au>Thovert, J-F</au><au>Antoine, R</au><au>Fontaine, F</au><au>Finizola, A</au><au>Adler, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal convection in three-dimensional fractured porous media</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-01</date><risdate>2018</risdate><volume>97</volume><issue>1-1</issue><spage>013106</spage><epage>013106</epage><pages>013106-013106</pages><artnum>013106</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>29448384</pmid><doi>10.1103/PhysRevE.97.013106</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9164-0630</orcidid><orcidid>https://orcid.org/0000-0002-0625-9713</orcidid><orcidid>https://orcid.org/0000-0003-3019-3790</orcidid><orcidid>https://orcid.org/0000-0002-5083-7349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2018-01, Vol.97 (1-1), p.013106-013106, Article 013106
issn 2470-0045
2470-0053
language eng
recordid cdi_hal_primary_oai_HAL_hal_03025954v1
source American Physical Society Journals
subjects Earth Sciences
Fluid mechanics
Geophysics
Mechanics
Physics
Sciences of the Universe
Thermics
title Thermal convection in three-dimensional fractured porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20convection%20in%20three-dimensional%20fractured%20porous%20media&rft.jtitle=Physical%20review.%20E&rft.au=Mezon,%20C&rft.date=2018-01&rft.volume=97&rft.issue=1-1&rft.spage=013106&rft.epage=013106&rft.pages=013106-013106&rft.artnum=013106&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.97.013106&rft_dat=%3Cproquest_hal_p%3E2003042464%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003042464&rft_id=info:pmid/29448384&rfr_iscdi=true