Shedding new light on the role of the Rydberg state in the photochemistry of aniline

Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-01, Vol.14 (28), p.9942-9947
Hauptverfasser: SPESYVTSEV, Roman, KIRKBY, Oliver M, VACHER, Morgane, FIELDING, Helen H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9947
container_issue 28
container_start_page 9942
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator SPESYVTSEV, Roman
KIRKBY, Oliver M
VACHER, Morgane
FIELDING, Helen H
description Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.
doi_str_mv 10.1039/c2cp41785e
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03014767v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038252999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</originalsourceid><addsrcrecordid>eNqF0V1LwzAUBuAgitPpjT9AeiOoMM1H2zSXY6gTBoLO65Kkp2uka2rSKfv3ZnZul17lEB5eXs5B6ILgO4KZuNdUtzHhWQIH6ITEKRsJnMWHu5mnA3Tq_QfGmCSEHaMBpZxgnmQnaP5WQVGYZhE18B3VZlF1kW2iroLI2RoiW_7Or-tCgVtEvpMdRKYHbWU7qytYGt-59YbKxtSmgTN0VMraw_n2HaL3x4f5ZDqavTw9T8azkY4T3I3S0EZlClSoIoVgwAlXBRYlgNZaaR5nCdGM8VgVJc6EKgjRWHIpk5TKgrEhuulzK1nnrTNL6da5lSafjmf55g8zTGKe8i8S7HVvW2c_V-C7PNTWUNeyAbvyedhkRhMqQo__KWVUJJzQQG97qp313kG5q0HwJlLk--MEfLnNXaklFDv6d40ArrZAei3r0slGG793aWCEpewHdx-VuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023295712</pqid></control><display><type>article</type><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</creator><creatorcontrib>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</creatorcontrib><description>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41785e</identifier><identifier>PMID: 22710758</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aniline ; Aniline Compounds - chemistry ; Channels ; Chemical Sciences ; Chemistry ; Decay ; Dynamics ; Electronics ; Exact sciences and technology ; Excitation ; General and physical chemistry ; Pathways ; Photochemical Processes ; Photochemistry ; Photoelectron Spectroscopy ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Rydberg states ; Time Factors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-01, Vol.14 (28), p.9942-9947</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</citedby><cites>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</cites><orcidid>0000-0001-9418-6579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26107136$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22710758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03014767$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>SPESYVTSEV, Roman</creatorcontrib><creatorcontrib>KIRKBY, Oliver M</creatorcontrib><creatorcontrib>VACHER, Morgane</creatorcontrib><creatorcontrib>FIELDING, Helen H</creatorcontrib><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</description><subject>Aniline</subject><subject>Aniline Compounds - chemistry</subject><subject>Channels</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Decay</subject><subject>Dynamics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>General and physical chemistry</subject><subject>Pathways</subject><subject>Photochemical Processes</subject><subject>Photochemistry</subject><subject>Photoelectron Spectroscopy</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Rydberg states</subject><subject>Time Factors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V1LwzAUBuAgitPpjT9AeiOoMM1H2zSXY6gTBoLO65Kkp2uka2rSKfv3ZnZul17lEB5eXs5B6ILgO4KZuNdUtzHhWQIH6ITEKRsJnMWHu5mnA3Tq_QfGmCSEHaMBpZxgnmQnaP5WQVGYZhE18B3VZlF1kW2iroLI2RoiW_7Or-tCgVtEvpMdRKYHbWU7qytYGt-59YbKxtSmgTN0VMraw_n2HaL3x4f5ZDqavTw9T8azkY4T3I3S0EZlClSoIoVgwAlXBRYlgNZaaR5nCdGM8VgVJc6EKgjRWHIpk5TKgrEhuulzK1nnrTNL6da5lSafjmf55g8zTGKe8i8S7HVvW2c_V-C7PNTWUNeyAbvyedhkRhMqQo__KWVUJJzQQG97qp313kG5q0HwJlLk--MEfLnNXaklFDv6d40ArrZAei3r0slGG793aWCEpewHdx-VuQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>SPESYVTSEV, Roman</creator><creator>KIRKBY, Oliver M</creator><creator>VACHER, Morgane</creator><creator>FIELDING, Helen H</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9418-6579</orcidid></search><sort><creationdate>20120101</creationdate><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><author>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aniline</topic><topic>Aniline Compounds - chemistry</topic><topic>Channels</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Decay</topic><topic>Dynamics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>General and physical chemistry</topic><topic>Pathways</topic><topic>Photochemical Processes</topic><topic>Photochemistry</topic><topic>Photoelectron Spectroscopy</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Rydberg states</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SPESYVTSEV, Roman</creatorcontrib><creatorcontrib>KIRKBY, Oliver M</creatorcontrib><creatorcontrib>VACHER, Morgane</creatorcontrib><creatorcontrib>FIELDING, Helen H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SPESYVTSEV, Roman</au><au>KIRKBY, Oliver M</au><au>VACHER, Morgane</au><au>FIELDING, Helen H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>14</volume><issue>28</issue><spage>9942</spage><epage>9947</epage><pages>9942-9947</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22710758</pmid><doi>10.1039/c2cp41785e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9418-6579</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-01, Vol.14 (28), p.9942-9947
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_03014767v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aniline
Aniline Compounds - chemistry
Channels
Chemical Sciences
Chemistry
Decay
Dynamics
Electronics
Exact sciences and technology
Excitation
General and physical chemistry
Pathways
Photochemical Processes
Photochemistry
Photoelectron Spectroscopy
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Rydberg states
Time Factors
title Shedding new light on the role of the Rydberg state in the photochemistry of aniline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20new%20light%20on%20the%20role%20of%20the%20Rydberg%20state%20in%20the%20photochemistry%20of%20aniline&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=SPESYVTSEV,%20Roman&rft.date=2012-01-01&rft.volume=14&rft.issue=28&rft.spage=9942&rft.epage=9947&rft.pages=9942-9947&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41785e&rft_dat=%3Cproquest_hal_p%3E1038252999%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023295712&rft_id=info:pmid/22710758&rfr_iscdi=true