Shedding new light on the role of the Rydberg state in the photochemistry of aniline
Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to i...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-01, Vol.14 (28), p.9942-9947 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9947 |
---|---|
container_issue | 28 |
container_start_page | 9942 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | SPESYVTSEV, Roman KIRKBY, Oliver M VACHER, Morgane FIELDING, Helen H |
description | Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states. |
doi_str_mv | 10.1039/c2cp41785e |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03014767v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038252999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</originalsourceid><addsrcrecordid>eNqF0V1LwzAUBuAgitPpjT9AeiOoMM1H2zSXY6gTBoLO65Kkp2uka2rSKfv3ZnZul17lEB5eXs5B6ILgO4KZuNdUtzHhWQIH6ITEKRsJnMWHu5mnA3Tq_QfGmCSEHaMBpZxgnmQnaP5WQVGYZhE18B3VZlF1kW2iroLI2RoiW_7Or-tCgVtEvpMdRKYHbWU7qytYGt-59YbKxtSmgTN0VMraw_n2HaL3x4f5ZDqavTw9T8azkY4T3I3S0EZlClSoIoVgwAlXBRYlgNZaaR5nCdGM8VgVJc6EKgjRWHIpk5TKgrEhuulzK1nnrTNL6da5lSafjmf55g8zTGKe8i8S7HVvW2c_V-C7PNTWUNeyAbvyedhkRhMqQo__KWVUJJzQQG97qp313kG5q0HwJlLk--MEfLnNXaklFDv6d40ArrZAei3r0slGG793aWCEpewHdx-VuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023295712</pqid></control><display><type>article</type><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</creator><creatorcontrib>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</creatorcontrib><description>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp41785e</identifier><identifier>PMID: 22710758</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aniline ; Aniline Compounds - chemistry ; Channels ; Chemical Sciences ; Chemistry ; Decay ; Dynamics ; Electronics ; Exact sciences and technology ; Excitation ; General and physical chemistry ; Pathways ; Photochemical Processes ; Photochemistry ; Photoelectron Spectroscopy ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Rydberg states ; Time Factors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-01, Vol.14 (28), p.9942-9947</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</citedby><cites>FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</cites><orcidid>0000-0001-9418-6579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26107136$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22710758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03014767$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>SPESYVTSEV, Roman</creatorcontrib><creatorcontrib>KIRKBY, Oliver M</creatorcontrib><creatorcontrib>VACHER, Morgane</creatorcontrib><creatorcontrib>FIELDING, Helen H</creatorcontrib><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</description><subject>Aniline</subject><subject>Aniline Compounds - chemistry</subject><subject>Channels</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Decay</subject><subject>Dynamics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>General and physical chemistry</subject><subject>Pathways</subject><subject>Photochemical Processes</subject><subject>Photochemistry</subject><subject>Photoelectron Spectroscopy</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Rydberg states</subject><subject>Time Factors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0V1LwzAUBuAgitPpjT9AeiOoMM1H2zSXY6gTBoLO65Kkp2uka2rSKfv3ZnZul17lEB5eXs5B6ILgO4KZuNdUtzHhWQIH6ITEKRsJnMWHu5mnA3Tq_QfGmCSEHaMBpZxgnmQnaP5WQVGYZhE18B3VZlF1kW2iroLI2RoiW_7Or-tCgVtEvpMdRKYHbWU7qytYGt-59YbKxtSmgTN0VMraw_n2HaL3x4f5ZDqavTw9T8azkY4T3I3S0EZlClSoIoVgwAlXBRYlgNZaaR5nCdGM8VgVJc6EKgjRWHIpk5TKgrEhuulzK1nnrTNL6da5lSafjmf55g8zTGKe8i8S7HVvW2c_V-C7PNTWUNeyAbvyedhkRhMqQo__KWVUJJzQQG97qp313kG5q0HwJlLk--MEfLnNXaklFDv6d40ArrZAei3r0slGG793aWCEpewHdx-VuQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>SPESYVTSEV, Roman</creator><creator>KIRKBY, Oliver M</creator><creator>VACHER, Morgane</creator><creator>FIELDING, Helen H</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9418-6579</orcidid></search><sort><creationdate>20120101</creationdate><title>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</title><author>SPESYVTSEV, Roman ; KIRKBY, Oliver M ; VACHER, Morgane ; FIELDING, Helen H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6151b8beb075a993e717bd09feecccbc74851c3374bdf089bd11c0a7aa562ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aniline</topic><topic>Aniline Compounds - chemistry</topic><topic>Channels</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Decay</topic><topic>Dynamics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>General and physical chemistry</topic><topic>Pathways</topic><topic>Photochemical Processes</topic><topic>Photochemistry</topic><topic>Photoelectron Spectroscopy</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Rydberg states</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SPESYVTSEV, Roman</creatorcontrib><creatorcontrib>KIRKBY, Oliver M</creatorcontrib><creatorcontrib>VACHER, Morgane</creatorcontrib><creatorcontrib>FIELDING, Helen H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SPESYVTSEV, Roman</au><au>KIRKBY, Oliver M</au><au>VACHER, Morgane</au><au>FIELDING, Helen H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding new light on the role of the Rydberg state in the photochemistry of aniline</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>14</volume><issue>28</issue><spage>9942</spage><epage>9947</epage><pages>9942-9947</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Efficient electronic relaxation following the absorption of ultraviolet light is crucial for the photostability of biological chromophores, so understanding the microscopic details of the decay pathways is of considerable interest. Here, we employ femtosecond time-resolved photoelectron imaging to investigate the ultrafast intramolecular dynamics of aniline, a prototypical aromatic amine, following excitation just below the second absorption maximum. We find that both the second ππ* state and the Rydberg state are populated during the excitation process. Surprisingly, the dominant non-radiative decay pathway is an ultrafast relaxation mechanism that transfers population straight back to the electronic ground-state. The vibrational energy resolution and photoelectron angular distributions obtained in our experiments reveal an interesting bifurcation of the Rydberg population to two non-radiative decay channels. The existence of these competing non-radiative relaxation channels in aniline illustrates how its photostability arises from a subtle balance between dynamics on different electronically excited states and importantly between Rydberg and valence states.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22710758</pmid><doi>10.1039/c2cp41785e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9418-6579</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-01, Vol.14 (28), p.9942-9947 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03014767v1 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aniline Aniline Compounds - chemistry Channels Chemical Sciences Chemistry Decay Dynamics Electronics Exact sciences and technology Excitation General and physical chemistry Pathways Photochemical Processes Photochemistry Photoelectron Spectroscopy Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Rydberg states Time Factors |
title | Shedding new light on the role of the Rydberg state in the photochemistry of aniline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20new%20light%20on%20the%20role%20of%20the%20Rydberg%20state%20in%20the%20photochemistry%20of%20aniline&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=SPESYVTSEV,%20Roman&rft.date=2012-01-01&rft.volume=14&rft.issue=28&rft.spage=9942&rft.epage=9947&rft.pages=9942-9947&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp41785e&rft_dat=%3Cproquest_hal_p%3E1038252999%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023295712&rft_id=info:pmid/22710758&rfr_iscdi=true |