Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1
Projected changes in near-surface relative humidity (RH) remain highly model-dependent over land and may have been underestimated by the former generation global climate models. Here the focus in on the recent CNRM-CM6-1 model, which shows an enhanced land surface drying in response to quadrupled at...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2020-09, Vol.55 (5-6), p.1613-1629 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1629 |
---|---|
container_issue | 5-6 |
container_start_page | 1613 |
container_title | Climate dynamics |
container_volume | 55 |
creator | Douville, Hervé Decharme, B. Delire, C. Colin, J. Joetzjer, E. Roehrig, R. Saint-Martin, D. Oudar, T. Stchepounoff, R. Voldoire, A. |
description | Projected changes in near-surface relative humidity (RH) remain highly model-dependent over land and may have been underestimated by the former generation global climate models. Here the focus in on the recent CNRM-CM6-1 model, which shows an enhanced land surface drying in response to quadrupled atmospheric CO
2
compared to its CNRM-CM5 predecessor. Atmosphere-only experiments with prescribed sea surface temperature (SST) are used to decompose the simulated RH changes into separate responses to uniform SST warming, pattern of SST anomalies, changes in sea-ice concentration, as well as direct radiative and physiological CO
2
effects. Results show that the strong drying simulated by CNRM-CM6-1 is due to both fast CO
2
effects and a SST-mediated response. The enhanced drying compared to CNRM-CM5 is partly due to the introduction of the physiological CO
2
effect that was not accounted for in CNRM-CM5. The global ocean warming also contributes to the RH decline over land, in reasonable agreement with the moisture advection mechanism proposed by earlier studies which however does not fully capture the contrasted RH response between the two CNRM models. The SST anomaly pattern is a significant driver of changes in RH humidity at the regional scale, which are partly explained by changes in atmospheric circulation. The improved land surface model may also contribute to a stronger soil moisture feedback in CNRM-CM6-1, which can amplify the surface aridity induced by global warming and, thereby, lead to a non-linear response of RH. |
doi_str_mv | 10.1007/s00382-020-05351-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03013962v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425727730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312x-5103b5db1aba3e798f2d4f12b1e199524956650bff6acec9b46bbe773c183ef3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcBVy6iL0nTTpdD_YQZB8R9SNoXp1LbMWll5t-bsaI7Vw8u51wel5BzDlccILsOAHImGAhgoKTibHtAJjyRMZrlySGZQC6BZSpTx-QkhDcAnqSZmJDqxtef6APtHO3XSLFdm7bEilZYNnWL-7wxbUVbNJ6FwTtTIvXYmD56dD2811Xd72jfUWP9sOlpsi1WgtYtLZ6el6xYpoyfkiNnmoBnP3dKXu5uX4oHtljdPxbzBSslF1umOEirKsuNNRKzfOZElTguLEee50okuUpTBda5ND5R5jZJrcUskyWfSXRySi7H2rVp9MbX78bvdGdq_TBf6H0GErjMU_HJI3sxshvffQwYev3WDb6N32mRCJWJWAuREiNV-i4Ej-63loPeD6_H4XUcXn8Pr7dRkqMUIty-ov-r_sf6AnH8hFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425727730</pqid></control><display><type>article</type><title>Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1</title><source>SpringerLink Journals - AutoHoldings</source><creator>Douville, Hervé ; Decharme, B. ; Delire, C. ; Colin, J. ; Joetzjer, E. ; Roehrig, R. ; Saint-Martin, D. ; Oudar, T. ; Stchepounoff, R. ; Voldoire, A.</creator><creatorcontrib>Douville, Hervé ; Decharme, B. ; Delire, C. ; Colin, J. ; Joetzjer, E. ; Roehrig, R. ; Saint-Martin, D. ; Oudar, T. ; Stchepounoff, R. ; Voldoire, A.</creatorcontrib><description>Projected changes in near-surface relative humidity (RH) remain highly model-dependent over land and may have been underestimated by the former generation global climate models. Here the focus in on the recent CNRM-CM6-1 model, which shows an enhanced land surface drying in response to quadrupled atmospheric CO
2
compared to its CNRM-CM5 predecessor. Atmosphere-only experiments with prescribed sea surface temperature (SST) are used to decompose the simulated RH changes into separate responses to uniform SST warming, pattern of SST anomalies, changes in sea-ice concentration, as well as direct radiative and physiological CO
2
effects. Results show that the strong drying simulated by CNRM-CM6-1 is due to both fast CO
2
effects and a SST-mediated response. The enhanced drying compared to CNRM-CM5 is partly due to the introduction of the physiological CO
2
effect that was not accounted for in CNRM-CM5. The global ocean warming also contributes to the RH decline over land, in reasonable agreement with the moisture advection mechanism proposed by earlier studies which however does not fully capture the contrasted RH response between the two CNRM models. The SST anomaly pattern is a significant driver of changes in RH humidity at the regional scale, which are partly explained by changes in atmospheric circulation. The improved land surface model may also contribute to a stronger soil moisture feedback in CNRM-CM6-1, which can amplify the surface aridity induced by global warming and, thereby, lead to a non-linear response of RH.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-020-05351-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advection ; Anomalies ; Aridity ; Atmospheric circulation ; Atmospheric circulation changes ; Atmospheric models ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Climate change ; Climate models ; Climatology ; Computer simulation ; Drying ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Global climate ; Global climate models ; Global warming ; Humidity ; Hydrology ; Land surface models ; Meteorology ; Nonlinear response ; Ocean temperature ; Ocean warming ; Oceanography ; Physiological effects ; Physiology ; Relative humidity ; Sciences of the Universe ; Sea ice ; Sea ice concentrations ; Sea surface ; Sea surface temperature ; Sea surface temperature anomalies ; Soil ; Soil moisture ; Surface temperature</subject><ispartof>Climate dynamics, 2020-09, Vol.55 (5-6), p.1613-1629</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312x-5103b5db1aba3e798f2d4f12b1e199524956650bff6acec9b46bbe773c183ef3</citedby><cites>FETCH-LOGICAL-c312x-5103b5db1aba3e798f2d4f12b1e199524956650bff6acec9b46bbe773c183ef3</cites><orcidid>0000-0002-6074-6467 ; 0000-0001-6781-1535 ; 0000-0002-6114-3211 ; 0000-0002-3903-3841 ; 0000-0002-8661-1464 ; 0000-0001-9585-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-020-05351-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-020-05351-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03013962$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Douville, Hervé</creatorcontrib><creatorcontrib>Decharme, B.</creatorcontrib><creatorcontrib>Delire, C.</creatorcontrib><creatorcontrib>Colin, J.</creatorcontrib><creatorcontrib>Joetzjer, E.</creatorcontrib><creatorcontrib>Roehrig, R.</creatorcontrib><creatorcontrib>Saint-Martin, D.</creatorcontrib><creatorcontrib>Oudar, T.</creatorcontrib><creatorcontrib>Stchepounoff, R.</creatorcontrib><creatorcontrib>Voldoire, A.</creatorcontrib><title>Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Projected changes in near-surface relative humidity (RH) remain highly model-dependent over land and may have been underestimated by the former generation global climate models. Here the focus in on the recent CNRM-CM6-1 model, which shows an enhanced land surface drying in response to quadrupled atmospheric CO
2
compared to its CNRM-CM5 predecessor. Atmosphere-only experiments with prescribed sea surface temperature (SST) are used to decompose the simulated RH changes into separate responses to uniform SST warming, pattern of SST anomalies, changes in sea-ice concentration, as well as direct radiative and physiological CO
2
effects. Results show that the strong drying simulated by CNRM-CM6-1 is due to both fast CO
2
effects and a SST-mediated response. The enhanced drying compared to CNRM-CM5 is partly due to the introduction of the physiological CO
2
effect that was not accounted for in CNRM-CM5. The global ocean warming also contributes to the RH decline over land, in reasonable agreement with the moisture advection mechanism proposed by earlier studies which however does not fully capture the contrasted RH response between the two CNRM models. The SST anomaly pattern is a significant driver of changes in RH humidity at the regional scale, which are partly explained by changes in atmospheric circulation. The improved land surface model may also contribute to a stronger soil moisture feedback in CNRM-CM6-1, which can amplify the surface aridity induced by global warming and, thereby, lead to a non-linear response of RH.</description><subject>Advection</subject><subject>Anomalies</subject><subject>Aridity</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation changes</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Drying</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Humidity</subject><subject>Hydrology</subject><subject>Land surface models</subject><subject>Meteorology</subject><subject>Nonlinear response</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceanography</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Relative humidity</subject><subject>Sciences of the Universe</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Surface temperature</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcBVy6iL0nTTpdD_YQZB8R9SNoXp1LbMWll5t-bsaI7Vw8u51wel5BzDlccILsOAHImGAhgoKTibHtAJjyRMZrlySGZQC6BZSpTx-QkhDcAnqSZmJDqxtef6APtHO3XSLFdm7bEilZYNnWL-7wxbUVbNJ6FwTtTIvXYmD56dD2811Xd72jfUWP9sOlpsi1WgtYtLZ6el6xYpoyfkiNnmoBnP3dKXu5uX4oHtljdPxbzBSslF1umOEirKsuNNRKzfOZElTguLEee50okuUpTBda5ND5R5jZJrcUskyWfSXRySi7H2rVp9MbX78bvdGdq_TBf6H0GErjMU_HJI3sxshvffQwYev3WDb6N32mRCJWJWAuREiNV-i4Ej-63loPeD6_H4XUcXn8Pr7dRkqMUIty-ov-r_sf6AnH8hFs</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Douville, Hervé</creator><creator>Decharme, B.</creator><creator>Delire, C.</creator><creator>Colin, J.</creator><creator>Joetzjer, E.</creator><creator>Roehrig, R.</creator><creator>Saint-Martin, D.</creator><creator>Oudar, T.</creator><creator>Stchepounoff, R.</creator><creator>Voldoire, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6074-6467</orcidid><orcidid>https://orcid.org/0000-0001-6781-1535</orcidid><orcidid>https://orcid.org/0000-0002-6114-3211</orcidid><orcidid>https://orcid.org/0000-0002-3903-3841</orcidid><orcidid>https://orcid.org/0000-0002-8661-1464</orcidid><orcidid>https://orcid.org/0000-0001-9585-7792</orcidid></search><sort><creationdate>20200901</creationdate><title>Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1</title><author>Douville, Hervé ; Decharme, B. ; Delire, C. ; Colin, J. ; Joetzjer, E. ; Roehrig, R. ; Saint-Martin, D. ; Oudar, T. ; Stchepounoff, R. ; Voldoire, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312x-5103b5db1aba3e798f2d4f12b1e199524956650bff6acec9b46bbe773c183ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Anomalies</topic><topic>Aridity</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation changes</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Drying</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Humidity</topic><topic>Hydrology</topic><topic>Land surface models</topic><topic>Meteorology</topic><topic>Nonlinear response</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceanography</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Relative humidity</topic><topic>Sciences of the Universe</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Surface temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douville, Hervé</creatorcontrib><creatorcontrib>Decharme, B.</creatorcontrib><creatorcontrib>Delire, C.</creatorcontrib><creatorcontrib>Colin, J.</creatorcontrib><creatorcontrib>Joetzjer, E.</creatorcontrib><creatorcontrib>Roehrig, R.</creatorcontrib><creatorcontrib>Saint-Martin, D.</creatorcontrib><creatorcontrib>Oudar, T.</creatorcontrib><creatorcontrib>Stchepounoff, R.</creatorcontrib><creatorcontrib>Voldoire, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douville, Hervé</au><au>Decharme, B.</au><au>Delire, C.</au><au>Colin, J.</au><au>Joetzjer, E.</au><au>Roehrig, R.</au><au>Saint-Martin, D.</au><au>Oudar, T.</au><au>Stchepounoff, R.</au><au>Voldoire, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>55</volume><issue>5-6</issue><spage>1613</spage><epage>1629</epage><pages>1613-1629</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Projected changes in near-surface relative humidity (RH) remain highly model-dependent over land and may have been underestimated by the former generation global climate models. Here the focus in on the recent CNRM-CM6-1 model, which shows an enhanced land surface drying in response to quadrupled atmospheric CO
2
compared to its CNRM-CM5 predecessor. Atmosphere-only experiments with prescribed sea surface temperature (SST) are used to decompose the simulated RH changes into separate responses to uniform SST warming, pattern of SST anomalies, changes in sea-ice concentration, as well as direct radiative and physiological CO
2
effects. Results show that the strong drying simulated by CNRM-CM6-1 is due to both fast CO
2
effects and a SST-mediated response. The enhanced drying compared to CNRM-CM5 is partly due to the introduction of the physiological CO
2
effect that was not accounted for in CNRM-CM5. The global ocean warming also contributes to the RH decline over land, in reasonable agreement with the moisture advection mechanism proposed by earlier studies which however does not fully capture the contrasted RH response between the two CNRM models. The SST anomaly pattern is a significant driver of changes in RH humidity at the regional scale, which are partly explained by changes in atmospheric circulation. The improved land surface model may also contribute to a stronger soil moisture feedback in CNRM-CM6-1, which can amplify the surface aridity induced by global warming and, thereby, lead to a non-linear response of RH.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-020-05351-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6074-6467</orcidid><orcidid>https://orcid.org/0000-0001-6781-1535</orcidid><orcidid>https://orcid.org/0000-0002-6114-3211</orcidid><orcidid>https://orcid.org/0000-0002-3903-3841</orcidid><orcidid>https://orcid.org/0000-0002-8661-1464</orcidid><orcidid>https://orcid.org/0000-0001-9585-7792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2020-09, Vol.55 (5-6), p.1613-1629 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03013962v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advection Anomalies Aridity Atmospheric circulation Atmospheric circulation changes Atmospheric models Carbon dioxide Carbon dioxide atmospheric concentrations Climate change Climate models Climatology Computer simulation Drying Earth and Environmental Science Earth Sciences Geophysics/Geodesy Global climate Global climate models Global warming Humidity Hydrology Land surface models Meteorology Nonlinear response Ocean temperature Ocean warming Oceanography Physiological effects Physiology Relative humidity Sciences of the Universe Sea ice Sea ice concentrations Sea surface Sea surface temperature Sea surface temperature anomalies Soil Soil moisture Surface temperature |
title | Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20of%20the%20enhanced%20decline%20of%20land%20near-surface%20relative%20humidity%20to%20abrupt%204xCO2%20in%20CNRM-CM6-1&rft.jtitle=Climate%20dynamics&rft.au=Douville,%20Herv%C3%A9&rft.date=2020-09-01&rft.volume=55&rft.issue=5-6&rft.spage=1613&rft.epage=1629&rft.pages=1613-1629&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-020-05351-x&rft_dat=%3Cproquest_hal_p%3E2425727730%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425727730&rft_id=info:pmid/&rfr_iscdi=true |