Heterochromatin replication goes hand in hand with telomere protection

Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-04, Vol.27 (4), p.313-318
Hauptverfasser: Mendez-Bermudez, Aaron, Giraud-Panis, Marie-Josèphe, Ye, Jing, Gilson, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 4
container_start_page 313
container_title Nature structural & molecular biology
container_volume 27
creator Mendez-Bermudez, Aaron
Giraud-Panis, Marie-Josèphe
Ye, Jing
Gilson, Eric
description Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis. Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.
doi_str_mv 10.1038/s41594-020-0400-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03013735v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A620062989</galeid><sourcerecordid>A620062989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</originalsourceid><addsrcrecordid>eNp1kktv1DAQxy0EoqXwAbigSFzoIa2fiX1cVZSttFIlCmfLcSa7rpJ4sR0e3x6HlKWLQD7M6zcjz-iP0GuCLwhm8jJyIhQvMcUl5hiX5Ak6JYKLUikpnh58xU7QixjvMaZC1Ow5OmGUMkJlfYqu15AgeLsLfjDJjUWAfe9sdv1YbD3EYmfGtsiFX_abS7siQe8HCFDsg09gZ_QletaZPsKrB3uGPl-__3S1Lje3H26uVpvSCoFTKYUkrCLWgJGMsqrjymKu6q6tKTem4Yq0QrSssw3pcsxMUzW0aZpKqpoBZ2fofJm7M73eBzeY8EN74_R6tdFzDjNMWM3EV5LZdwubv_llgpj04KKFvjcj-ClqyqSgdb4Izejbv9B7P4UxbzJTtVIcs0fU1vSg3dj5FIydh-pVRTGuqJIqUxf_oPJrYXDWj9C5nD9qOD9qyEyC72lrphj1zd3HY5YsrA0-xgDd4QgE61kTetGEzprQsyb0fIc3D8tNzQDtoeO3CDJAFyDm0riF8Gf7_0_9CRYwvYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387994032</pqid></control><display><type>article</type><title>Heterochromatin replication goes hand in hand with telomere protection</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</creator><creatorcontrib>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</creatorcontrib><description>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis. Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0400-1</identifier><identifier>PMID: 32231287</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/100 ; 631/337/151 ; Aging ; Aging (natural) ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell cycle ; Chromatin ; Chromatin - genetics ; Chromatin - ultrastructure ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA replication ; DNA Replication - genetics ; Evolutionary genetics ; Gene expression ; Genetic research ; Genomes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - ultrastructure ; Humans ; Kinases ; Life Sciences ; Mammals ; Membrane Biology ; Molecular biology ; Perspective ; Physiological aspects ; Protective structures ; Protein Structure ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Proteins - ultrastructure ; Replication ; Structure ; Telomerase ; Telomere - genetics ; Telomere - ultrastructure ; Telomeres ; Yeast</subject><ispartof>Nature structural &amp; molecular biology, 2020-04, Vol.27 (4), p.313-318</ispartof><rights>Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature America, Inc. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</citedby><cites>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</cites><orcidid>0000-0001-7941-2873 ; 0000-0001-5738-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0400-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0400-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03013735$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendez-Bermudez, Aaron</creatorcontrib><creatorcontrib>Giraud-Panis, Marie-Josèphe</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Gilson, Eric</creatorcontrib><title>Heterochromatin replication goes hand in hand with telomere protection</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis. Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</description><subject>631/337/100</subject><subject>631/337/151</subject><subject>Aging</subject><subject>Aging (natural)</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell cycle</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - ultrastructure</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Perspective</subject><subject>Physiological aspects</subject><subject>Protective structures</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - ultrastructure</subject><subject>Replication</subject><subject>Structure</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - ultrastructure</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kktv1DAQxy0EoqXwAbigSFzoIa2fiX1cVZSttFIlCmfLcSa7rpJ4sR0e3x6HlKWLQD7M6zcjz-iP0GuCLwhm8jJyIhQvMcUl5hiX5Ak6JYKLUikpnh58xU7QixjvMaZC1Ow5OmGUMkJlfYqu15AgeLsLfjDJjUWAfe9sdv1YbD3EYmfGtsiFX_abS7siQe8HCFDsg09gZ_QletaZPsKrB3uGPl-__3S1Lje3H26uVpvSCoFTKYUkrCLWgJGMsqrjymKu6q6tKTem4Yq0QrSssw3pcsxMUzW0aZpKqpoBZ2fofJm7M73eBzeY8EN74_R6tdFzDjNMWM3EV5LZdwubv_llgpj04KKFvjcj-ClqyqSgdb4Izejbv9B7P4UxbzJTtVIcs0fU1vSg3dj5FIydh-pVRTGuqJIqUxf_oPJrYXDWj9C5nD9qOD9qyEyC72lrphj1zd3HY5YsrA0-xgDd4QgE61kTetGEzprQsyb0fIc3D8tNzQDtoeO3CDJAFyDm0riF8Gf7_0_9CRYwvYM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mendez-Bermudez, Aaron</creator><creator>Giraud-Panis, Marie-Josèphe</creator><creator>Ye, Jing</creator><creator>Gilson, Eric</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7941-2873</orcidid><orcidid>https://orcid.org/0000-0001-5738-6723</orcidid></search><sort><creationdate>20200401</creationdate><title>Heterochromatin replication goes hand in hand with telomere protection</title><author>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/100</topic><topic>631/337/151</topic><topic>Aging</topic><topic>Aging (natural)</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell cycle</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - ultrastructure</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Perspective</topic><topic>Physiological aspects</topic><topic>Protective structures</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - ultrastructure</topic><topic>Replication</topic><topic>Structure</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - ultrastructure</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendez-Bermudez, Aaron</creatorcontrib><creatorcontrib>Giraud-Panis, Marie-Josèphe</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Gilson, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendez-Bermudez, Aaron</au><au>Giraud-Panis, Marie-Josèphe</au><au>Ye, Jing</au><au>Gilson, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatin replication goes hand in hand with telomere protection</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><spage>313</spage><epage>318</epage><pages>313-318</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis. Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32231287</pmid><doi>10.1038/s41594-020-0400-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7941-2873</orcidid><orcidid>https://orcid.org/0000-0001-5738-6723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-04, Vol.27 (4), p.313-318
issn 1545-9993
1545-9985
language eng
recordid cdi_hal_primary_oai_HAL_hal_03013735v1
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/337/100
631/337/151
Aging
Aging (natural)
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Cell cycle
Chromatin
Chromatin - genetics
Chromatin - ultrastructure
Chromosomes
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA replication
DNA Replication - genetics
Evolutionary genetics
Gene expression
Genetic research
Genomes
Heterochromatin
Heterochromatin - genetics
Heterochromatin - ultrastructure
Humans
Kinases
Life Sciences
Mammals
Membrane Biology
Molecular biology
Perspective
Physiological aspects
Protective structures
Protein Structure
Proteins
Proteins - chemistry
Proteins - genetics
Proteins - ultrastructure
Replication
Structure
Telomerase
Telomere - genetics
Telomere - ultrastructure
Telomeres
Yeast
title Heterochromatin replication goes hand in hand with telomere protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatin%20replication%20goes%20hand%20in%20hand%20with%20telomere%20protection&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Mendez-Bermudez,%20Aaron&rft.date=2020-04-01&rft.volume=27&rft.issue=4&rft.spage=313&rft.epage=318&rft.pages=313-318&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0400-1&rft_dat=%3Cgale_hal_p%3EA620062989%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387994032&rft_id=info:pmid/32231287&rft_galeid=A620062989&rfr_iscdi=true