Heterochromatin replication goes hand in hand with telomere protection
Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2020-04, Vol.27 (4), p.313-318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 4 |
container_start_page | 313 |
container_title | Nature structural & molecular biology |
container_volume | 27 |
creator | Mendez-Bermudez, Aaron Giraud-Panis, Marie-Josèphe Ye, Jing Gilson, Eric |
description | Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.
Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions. |
doi_str_mv | 10.1038/s41594-020-0400-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03013735v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A620062989</galeid><sourcerecordid>A620062989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</originalsourceid><addsrcrecordid>eNp1kktv1DAQxy0EoqXwAbigSFzoIa2fiX1cVZSttFIlCmfLcSa7rpJ4sR0e3x6HlKWLQD7M6zcjz-iP0GuCLwhm8jJyIhQvMcUl5hiX5Ak6JYKLUikpnh58xU7QixjvMaZC1Ow5OmGUMkJlfYqu15AgeLsLfjDJjUWAfe9sdv1YbD3EYmfGtsiFX_abS7siQe8HCFDsg09gZ_QletaZPsKrB3uGPl-__3S1Lje3H26uVpvSCoFTKYUkrCLWgJGMsqrjymKu6q6tKTem4Yq0QrSssw3pcsxMUzW0aZpKqpoBZ2fofJm7M73eBzeY8EN74_R6tdFzDjNMWM3EV5LZdwubv_llgpj04KKFvjcj-ClqyqSgdb4Izejbv9B7P4UxbzJTtVIcs0fU1vSg3dj5FIydh-pVRTGuqJIqUxf_oPJrYXDWj9C5nD9qOD9qyEyC72lrphj1zd3HY5YsrA0-xgDd4QgE61kTetGEzprQsyb0fIc3D8tNzQDtoeO3CDJAFyDm0riF8Gf7_0_9CRYwvYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387994032</pqid></control><display><type>article</type><title>Heterochromatin replication goes hand in hand with telomere protection</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</creator><creatorcontrib>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</creatorcontrib><description>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.
Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0400-1</identifier><identifier>PMID: 32231287</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/100 ; 631/337/151 ; Aging ; Aging (natural) ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cell cycle ; Chromatin ; Chromatin - genetics ; Chromatin - ultrastructure ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA replication ; DNA Replication - genetics ; Evolutionary genetics ; Gene expression ; Genetic research ; Genomes ; Heterochromatin ; Heterochromatin - genetics ; Heterochromatin - ultrastructure ; Humans ; Kinases ; Life Sciences ; Mammals ; Membrane Biology ; Molecular biology ; Perspective ; Physiological aspects ; Protective structures ; Protein Structure ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Proteins - ultrastructure ; Replication ; Structure ; Telomerase ; Telomere - genetics ; Telomere - ultrastructure ; Telomeres ; Yeast</subject><ispartof>Nature structural & molecular biology, 2020-04, Vol.27 (4), p.313-318</ispartof><rights>Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature America, Inc. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</citedby><cites>FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</cites><orcidid>0000-0001-7941-2873 ; 0000-0001-5738-6723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0400-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0400-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32231287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03013735$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendez-Bermudez, Aaron</creatorcontrib><creatorcontrib>Giraud-Panis, Marie-Josèphe</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Gilson, Eric</creatorcontrib><title>Heterochromatin replication goes hand in hand with telomere protection</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.
Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</description><subject>631/337/100</subject><subject>631/337/151</subject><subject>Aging</subject><subject>Aging (natural)</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell cycle</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - ultrastructure</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Perspective</subject><subject>Physiological aspects</subject><subject>Protective structures</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - ultrastructure</subject><subject>Replication</subject><subject>Structure</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - ultrastructure</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kktv1DAQxy0EoqXwAbigSFzoIa2fiX1cVZSttFIlCmfLcSa7rpJ4sR0e3x6HlKWLQD7M6zcjz-iP0GuCLwhm8jJyIhQvMcUl5hiX5Ak6JYKLUikpnh58xU7QixjvMaZC1Ow5OmGUMkJlfYqu15AgeLsLfjDJjUWAfe9sdv1YbD3EYmfGtsiFX_abS7siQe8HCFDsg09gZ_QletaZPsKrB3uGPl-__3S1Lje3H26uVpvSCoFTKYUkrCLWgJGMsqrjymKu6q6tKTem4Yq0QrSssw3pcsxMUzW0aZpKqpoBZ2fofJm7M73eBzeY8EN74_R6tdFzDjNMWM3EV5LZdwubv_llgpj04KKFvjcj-ClqyqSgdb4Izejbv9B7P4UxbzJTtVIcs0fU1vSg3dj5FIydh-pVRTGuqJIqUxf_oPJrYXDWj9C5nD9qOD9qyEyC72lrphj1zd3HY5YsrA0-xgDd4QgE61kTetGEzprQsyb0fIc3D8tNzQDtoeO3CDJAFyDm0riF8Gf7_0_9CRYwvYM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mendez-Bermudez, Aaron</creator><creator>Giraud-Panis, Marie-Josèphe</creator><creator>Ye, Jing</creator><creator>Gilson, Eric</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7941-2873</orcidid><orcidid>https://orcid.org/0000-0001-5738-6723</orcidid></search><sort><creationdate>20200401</creationdate><title>Heterochromatin replication goes hand in hand with telomere protection</title><author>Mendez-Bermudez, Aaron ; Giraud-Panis, Marie-Josèphe ; Ye, Jing ; Gilson, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-8581361caea83236f49c0497fd724aab491d55d3fcb1faab3ab6b2bbb68973e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/100</topic><topic>631/337/151</topic><topic>Aging</topic><topic>Aging (natural)</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell cycle</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - ultrastructure</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Perspective</topic><topic>Physiological aspects</topic><topic>Protective structures</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - ultrastructure</topic><topic>Replication</topic><topic>Structure</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - ultrastructure</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendez-Bermudez, Aaron</creatorcontrib><creatorcontrib>Giraud-Panis, Marie-Josèphe</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Gilson, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendez-Bermudez, Aaron</au><au>Giraud-Panis, Marie-Josèphe</au><au>Ye, Jing</au><au>Gilson, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochromatin replication goes hand in hand with telomere protection</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><spage>313</spage><epage>318</epage><pages>313-318</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.
Emerging evidence that telomere-specific Shelterin components also play roles in DNA replication timing within heterochromatin and genome maintenance suggests a potential common evolutionary origin of their protective and regulatory functions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32231287</pmid><doi>10.1038/s41594-020-0400-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7941-2873</orcidid><orcidid>https://orcid.org/0000-0001-5738-6723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2020-04, Vol.27 (4), p.313-318 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03013735v1 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/337/100 631/337/151 Aging Aging (natural) Biochemistry Biological Microscopy Biomedical and Life Sciences Cell cycle Chromatin Chromatin - genetics Chromatin - ultrastructure Chromosomes Deoxyribonucleic acid DNA DNA biosynthesis DNA replication DNA Replication - genetics Evolutionary genetics Gene expression Genetic research Genomes Heterochromatin Heterochromatin - genetics Heterochromatin - ultrastructure Humans Kinases Life Sciences Mammals Membrane Biology Molecular biology Perspective Physiological aspects Protective structures Protein Structure Proteins Proteins - chemistry Proteins - genetics Proteins - ultrastructure Replication Structure Telomerase Telomere - genetics Telomere - ultrastructure Telomeres Yeast |
title | Heterochromatin replication goes hand in hand with telomere protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochromatin%20replication%20goes%20hand%20in%20hand%20with%20telomere%20protection&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Mendez-Bermudez,%20Aaron&rft.date=2020-04-01&rft.volume=27&rft.issue=4&rft.spage=313&rft.epage=318&rft.pages=313-318&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0400-1&rft_dat=%3Cgale_hal_p%3EA620062989%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387994032&rft_id=info:pmid/32231287&rft_galeid=A620062989&rfr_iscdi=true |