Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma
The LIBS (Laser-Induced Breakdown Spectroscopy) method has already demonstrated its reliability and its robustness in many situations for the multi-elemental composition determination of samples. However, certain conditions prevent a totally satisfactory determination. For instance, the method is we...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part B: Atomic spectroscopy 2021-01, Vol.175, p.106011, Article 106011 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106011 |
container_title | Spectrochimica acta. Part B: Atomic spectroscopy |
container_volume | 175 |
creator | Favre, Aurélien Morel, Vincent Bultel, Arnaud Godard, Gilles Idlahcen, Said Grisolia, Christian |
description | The LIBS (Laser-Induced Breakdown Spectroscopy) method has already demonstrated its reliability and its robustness in many situations for the multi-elemental composition determination of samples. However, certain conditions prevent a totally satisfactory determination. For instance, the method is weakly efficient to measure with accuracy the light elements concentration in metallic matrices. Since the laser pulse used to produce the plasma contributes to its heating, using an additional pulse (double pulse configuration) provides the increase in electron temperature and density without additional ablation. A better signal-to-noise ratio and a lower limit of detection can be reached. The present paper reports the results of different experiments performed to quantify the modifications induced (1) on the electron density by the second laser pulse in a preformed aluminum plasma, and (2) on the second laser pulse itself. The related experiments have been done in the case where the plasma is produced by a picosecond laser pulse and the second laser pulse is of the nanosecond type. The electron density reaches a maximum resulting from the total ionization of the aluminum plasma volume irradiated by the second laser pulse.
[Display omitted]
•Measurements in space and time characterizing the absorption.•Electron density variation of the same order for the studied experimental conditions.•Observed absorption strongly depending on the experimental conditions.•Saturation effect in the ionization process put into light. |
doi_str_mv | 10.1016/j.sab.2020.106011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03011273v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S058485472030450X</els_id><sourcerecordid>2487169134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bb5a78e9eef2b186fefa240ea5996f49094eb1a98b9e9203658a0db55931d3c93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF4ewF3BlYuOuTRtgqthUEcYcKNbQ9KeYkrb1KQdmLc3pSK4cZXL-f7DOR9CNwSvCSb5fbMO2qwppvM7x4ScoBURBUsZz_kpWmEuslTwrDhHFyE0GGPKKV-hj40Jzg-jdX3i6kQnve5dgNL1VdLqAD4ZpjZAYo6xNtjyTy21fTWVUCWDh9r5Lt50O3W2n7pkiESnr9BZrWP--ue8RO9Pj2_bXbp_fX7ZbvZpmWE6psZwXQiQADU1ROQ11JpmGDSXMq8ziWUGhmgpjARJMcu50LgynEtGKlZKdonulr6fulWDt532R-W0VbvNXs1_mEUntGAHEtnbhR28-5ogjKpxk-_jeIpmoiC5JCyLFFmo0rsQ4n6_bQlWs3LVqKhczcrVojxmHpYMxFUPFrwKpYU-GrIeylFVzv6T_gamVIiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487169134</pqid></control><display><type>article</type><title>Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Favre, Aurélien ; Morel, Vincent ; Bultel, Arnaud ; Godard, Gilles ; Idlahcen, Said ; Grisolia, Christian</creator><creatorcontrib>Favre, Aurélien ; Morel, Vincent ; Bultel, Arnaud ; Godard, Gilles ; Idlahcen, Said ; Grisolia, Christian</creatorcontrib><description>The LIBS (Laser-Induced Breakdown Spectroscopy) method has already demonstrated its reliability and its robustness in many situations for the multi-elemental composition determination of samples. However, certain conditions prevent a totally satisfactory determination. For instance, the method is weakly efficient to measure with accuracy the light elements concentration in metallic matrices. Since the laser pulse used to produce the plasma contributes to its heating, using an additional pulse (double pulse configuration) provides the increase in electron temperature and density without additional ablation. A better signal-to-noise ratio and a lower limit of detection can be reached. The present paper reports the results of different experiments performed to quantify the modifications induced (1) on the electron density by the second laser pulse in a preformed aluminum plasma, and (2) on the second laser pulse itself. The related experiments have been done in the case where the plasma is produced by a picosecond laser pulse and the second laser pulse is of the nanosecond type. The electron density reaches a maximum resulting from the total ionization of the aluminum plasma volume irradiated by the second laser pulse.
[Display omitted]
•Measurements in space and time characterizing the absorption.•Electron density variation of the same order for the studied experimental conditions.•Observed absorption strongly depending on the experimental conditions.•Saturation effect in the ionization process put into light.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2020.106011</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Ablation ; Absorption ; Aluminium ; Aluminum ; Analytical methods ; Atomic Physics ; Chemical composition ; Density ; Double-pulse ; Electron density ; Electron energy ; Engineering Sciences ; Inverse bremsstrahlung ; Ionization ; Laser beam heating ; Laser induced breakdown spectroscopy ; Laser-induced plasmas ; Lasers ; LIBS ; Light elements ; Materials ; Metal concentrations ; Multiphoton ionization ; Nanosecond ; Nuclear Experiment ; Physics ; Picosecond ; Plasma ; Reactive fluid environment ; Signal to noise ratio ; Spectroscopy</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2021-01, Vol.175, p.106011, Article 106011</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bb5a78e9eef2b186fefa240ea5996f49094eb1a98b9e9203658a0db55931d3c93</citedby><cites>FETCH-LOGICAL-c402t-bb5a78e9eef2b186fefa240ea5996f49094eb1a98b9e9203658a0db55931d3c93</cites><orcidid>0000-0003-4792-9995 ; 0000-0002-3038-9593 ; 0000-0001-6930-4035 ; 0000-0003-4209-0481 ; 0000-0003-3117-8285 ; 0000-0002-2866-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sab.2020.106011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03011273$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Favre, Aurélien</creatorcontrib><creatorcontrib>Morel, Vincent</creatorcontrib><creatorcontrib>Bultel, Arnaud</creatorcontrib><creatorcontrib>Godard, Gilles</creatorcontrib><creatorcontrib>Idlahcen, Said</creatorcontrib><creatorcontrib>Grisolia, Christian</creatorcontrib><title>Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>The LIBS (Laser-Induced Breakdown Spectroscopy) method has already demonstrated its reliability and its robustness in many situations for the multi-elemental composition determination of samples. However, certain conditions prevent a totally satisfactory determination. For instance, the method is weakly efficient to measure with accuracy the light elements concentration in metallic matrices. Since the laser pulse used to produce the plasma contributes to its heating, using an additional pulse (double pulse configuration) provides the increase in electron temperature and density without additional ablation. A better signal-to-noise ratio and a lower limit of detection can be reached. The present paper reports the results of different experiments performed to quantify the modifications induced (1) on the electron density by the second laser pulse in a preformed aluminum plasma, and (2) on the second laser pulse itself. The related experiments have been done in the case where the plasma is produced by a picosecond laser pulse and the second laser pulse is of the nanosecond type. The electron density reaches a maximum resulting from the total ionization of the aluminum plasma volume irradiated by the second laser pulse.
[Display omitted]
•Measurements in space and time characterizing the absorption.•Electron density variation of the same order for the studied experimental conditions.•Observed absorption strongly depending on the experimental conditions.•Saturation effect in the ionization process put into light.</description><subject>Ablation</subject><subject>Absorption</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Analytical methods</subject><subject>Atomic Physics</subject><subject>Chemical composition</subject><subject>Density</subject><subject>Double-pulse</subject><subject>Electron density</subject><subject>Electron energy</subject><subject>Engineering Sciences</subject><subject>Inverse bremsstrahlung</subject><subject>Ionization</subject><subject>Laser beam heating</subject><subject>Laser induced breakdown spectroscopy</subject><subject>Laser-induced plasmas</subject><subject>Lasers</subject><subject>LIBS</subject><subject>Light elements</subject><subject>Materials</subject><subject>Metal concentrations</subject><subject>Multiphoton ionization</subject><subject>Nanosecond</subject><subject>Nuclear Experiment</subject><subject>Physics</subject><subject>Picosecond</subject><subject>Plasma</subject><subject>Reactive fluid environment</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF4ewF3BlYuOuTRtgqthUEcYcKNbQ9KeYkrb1KQdmLc3pSK4cZXL-f7DOR9CNwSvCSb5fbMO2qwppvM7x4ScoBURBUsZz_kpWmEuslTwrDhHFyE0GGPKKV-hj40Jzg-jdX3i6kQnve5dgNL1VdLqAD4ZpjZAYo6xNtjyTy21fTWVUCWDh9r5Lt50O3W2n7pkiESnr9BZrWP--ue8RO9Pj2_bXbp_fX7ZbvZpmWE6psZwXQiQADU1ROQ11JpmGDSXMq8ziWUGhmgpjARJMcu50LgynEtGKlZKdonulr6fulWDt532R-W0VbvNXs1_mEUntGAHEtnbhR28-5ogjKpxk-_jeIpmoiC5JCyLFFmo0rsQ4n6_bQlWs3LVqKhczcrVojxmHpYMxFUPFrwKpYU-GrIeylFVzv6T_gamVIiw</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Favre, Aurélien</creator><creator>Morel, Vincent</creator><creator>Bultel, Arnaud</creator><creator>Godard, Gilles</creator><creator>Idlahcen, Said</creator><creator>Grisolia, Christian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SR</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>JG9</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4792-9995</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid><orcidid>https://orcid.org/0000-0001-6930-4035</orcidid><orcidid>https://orcid.org/0000-0003-4209-0481</orcidid><orcidid>https://orcid.org/0000-0003-3117-8285</orcidid><orcidid>https://orcid.org/0000-0002-2866-8614</orcidid></search><sort><creationdate>202101</creationdate><title>Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma</title><author>Favre, Aurélien ; Morel, Vincent ; Bultel, Arnaud ; Godard, Gilles ; Idlahcen, Said ; Grisolia, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bb5a78e9eef2b186fefa240ea5996f49094eb1a98b9e9203658a0db55931d3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Absorption</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Analytical methods</topic><topic>Atomic Physics</topic><topic>Chemical composition</topic><topic>Density</topic><topic>Double-pulse</topic><topic>Electron density</topic><topic>Electron energy</topic><topic>Engineering Sciences</topic><topic>Inverse bremsstrahlung</topic><topic>Ionization</topic><topic>Laser beam heating</topic><topic>Laser induced breakdown spectroscopy</topic><topic>Laser-induced plasmas</topic><topic>Lasers</topic><topic>LIBS</topic><topic>Light elements</topic><topic>Materials</topic><topic>Metal concentrations</topic><topic>Multiphoton ionization</topic><topic>Nanosecond</topic><topic>Nuclear Experiment</topic><topic>Physics</topic><topic>Picosecond</topic><topic>Plasma</topic><topic>Reactive fluid environment</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favre, Aurélien</creatorcontrib><creatorcontrib>Morel, Vincent</creatorcontrib><creatorcontrib>Bultel, Arnaud</creatorcontrib><creatorcontrib>Godard, Gilles</creatorcontrib><creatorcontrib>Idlahcen, Said</creatorcontrib><creatorcontrib>Grisolia, Christian</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favre, Aurélien</au><au>Morel, Vincent</au><au>Bultel, Arnaud</au><au>Godard, Gilles</au><au>Idlahcen, Said</au><au>Grisolia, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2021-01</date><risdate>2021</risdate><volume>175</volume><spage>106011</spage><pages>106011-</pages><artnum>106011</artnum><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>The LIBS (Laser-Induced Breakdown Spectroscopy) method has already demonstrated its reliability and its robustness in many situations for the multi-elemental composition determination of samples. However, certain conditions prevent a totally satisfactory determination. For instance, the method is weakly efficient to measure with accuracy the light elements concentration in metallic matrices. Since the laser pulse used to produce the plasma contributes to its heating, using an additional pulse (double pulse configuration) provides the increase in electron temperature and density without additional ablation. A better signal-to-noise ratio and a lower limit of detection can be reached. The present paper reports the results of different experiments performed to quantify the modifications induced (1) on the electron density by the second laser pulse in a preformed aluminum plasma, and (2) on the second laser pulse itself. The related experiments have been done in the case where the plasma is produced by a picosecond laser pulse and the second laser pulse is of the nanosecond type. The electron density reaches a maximum resulting from the total ionization of the aluminum plasma volume irradiated by the second laser pulse.
[Display omitted]
•Measurements in space and time characterizing the absorption.•Electron density variation of the same order for the studied experimental conditions.•Observed absorption strongly depending on the experimental conditions.•Saturation effect in the ionization process put into light.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2020.106011</doi><orcidid>https://orcid.org/0000-0003-4792-9995</orcidid><orcidid>https://orcid.org/0000-0002-3038-9593</orcidid><orcidid>https://orcid.org/0000-0001-6930-4035</orcidid><orcidid>https://orcid.org/0000-0003-4209-0481</orcidid><orcidid>https://orcid.org/0000-0003-3117-8285</orcidid><orcidid>https://orcid.org/0000-0002-2866-8614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0584-8547 |
ispartof | Spectrochimica acta. Part B: Atomic spectroscopy, 2021-01, Vol.175, p.106011, Article 106011 |
issn | 0584-8547 1873-3565 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03011273v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Ablation Absorption Aluminium Aluminum Analytical methods Atomic Physics Chemical composition Density Double-pulse Electron density Electron energy Engineering Sciences Inverse bremsstrahlung Ionization Laser beam heating Laser induced breakdown spectroscopy Laser-induced plasmas Lasers LIBS Light elements Materials Metal concentrations Multiphoton ionization Nanosecond Nuclear Experiment Physics Picosecond Plasma Reactive fluid environment Signal to noise ratio Spectroscopy |
title | Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absorption%20of%20a%20nanosecond%20laser%20pulse%20by%20a%20picosecond%20laser-induced%20preformed%20aluminum%20plasma&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Favre,%20Aur%C3%A9lien&rft.date=2021-01&rft.volume=175&rft.spage=106011&rft.pages=106011-&rft.artnum=106011&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2020.106011&rft_dat=%3Cproquest_hal_p%3E2487169134%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487169134&rft_id=info:pmid/&rft_els_id=S058485472030450X&rfr_iscdi=true |