Laboratory evidence for proton energization by collisionless shock surfing

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-10, Vol.17 (10), p.1177-1182
Hauptverfasser: Yao, W., Fazzini, A., Chen, S. N., Burdonov, K., Antici, P., Béard, J., Bolaños, S., Ciardi, A., Diab, R., Filippov, E. D., Kisyov, S., Lelasseux, V., Miceli, M., Moreno, Q., Nastasa, V., Orlando, S., Pikuz, S., Popescu, D. C., Revet, G., Ribeyre, X., d’Humières, E., Fuchs, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 10
container_start_page 1177
container_title Nature physics
container_volume 17
creator Yao, W.
Fazzini, A.
Chen, S. N.
Burdonov, K.
Antici, P.
Béard, J.
Bolaños, S.
Ciardi, A.
Diab, R.
Filippov, E. D.
Kisyov, S.
Lelasseux, V.
Miceli, M.
Moreno, Q.
Nastasa, V.
Orlando, S.
Pikuz, S.
Popescu, D. C.
Revet, G.
Ribeyre, X.
d’Humières, E.
Fuchs, J.
description Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.
doi_str_mv 10.1038/s41567-021-01325-w
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03011023v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579464578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ecc9f2dd2b0aefcf9c959d520d367c38b21da0c8fd4822daacf43a9caaba13d63</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwBzhF4sTB4C3bsaqgBUXiAmdr4qVNCXGx01bl1-MSVG6cZtH3nmYeQteU3FHCi_sgaJrlmDCKCeUsxbsTNKK5SDETBT099jk_RxchrAgRLKN8hJ4rqJ2H3vl9YraNNp0yiXU-WXvXuy4xnfGL5gv6Jg71PlGubZsQh9aEkISlU-9J2HjbdItLdGahDebqt47R2-PD63SOq5fZ03RSYSUy3mOjVGmZ1qwmYKyypSrTUqeMaJ7lihc1oxqIKqwWBWMaQFnBoVQANVCuMz5Gt4PvElq59s0H-L100Mj5pJKHHeGEUsL4lkb2ZmDjO58bE3q5chvfxfMkS_NSZCLNi0ixgVLeheCNPdpSIg_5yiFfGfOVP_nKXRTxQRQi3C2M_7P-R_UN0J1_4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579464578</pqid></control><display><type>article</type><title>Laboratory evidence for proton energization by collisionless shock surfing</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yao, W. ; Fazzini, A. ; Chen, S. N. ; Burdonov, K. ; Antici, P. ; Béard, J. ; Bolaños, S. ; Ciardi, A. ; Diab, R. ; Filippov, E. D. ; Kisyov, S. ; Lelasseux, V. ; Miceli, M. ; Moreno, Q. ; Nastasa, V. ; Orlando, S. ; Pikuz, S. ; Popescu, D. C. ; Revet, G. ; Ribeyre, X. ; d’Humières, E. ; Fuchs, J.</creator><creatorcontrib>Yao, W. ; Fazzini, A. ; Chen, S. N. ; Burdonov, K. ; Antici, P. ; Béard, J. ; Bolaños, S. ; Ciardi, A. ; Diab, R. ; Filippov, E. D. ; Kisyov, S. ; Lelasseux, V. ; Miceli, M. ; Moreno, Q. ; Nastasa, V. ; Orlando, S. ; Pikuz, S. ; Popescu, D. C. ; Revet, G. ; Ribeyre, X. ; d’Humières, E. ; Fuchs, J.</creatorcontrib><description>Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-021-01325-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960/1135 ; 639/766/34/4125 ; Atomic ; Charged particles ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Field strength ; General Physics ; Laboratories ; Magnetic fields ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Protons ; Shock waves ; Simulation ; Supernova remnants ; Surfing ; Theoretical</subject><ispartof>Nature physics, 2021-10, Vol.17 (10), p.1177-1182</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ecc9f2dd2b0aefcf9c959d520d367c38b21da0c8fd4822daacf43a9caaba13d63</citedby><cites>FETCH-LOGICAL-c463t-ecc9f2dd2b0aefcf9c959d520d367c38b21da0c8fd4822daacf43a9caaba13d63</cites><orcidid>0000-0003-3463-3343 ; 0000-0002-9235-4492 ; 0000-0002-9234-1210 ; 0000-0001-8774-8860 ; 0000-0001-9765-0787 ; 0000-0002-6017-9300 ; 0000-0003-2836-540X ; 0000-0001-9089-6266 ; 0000-0003-0876-8391 ; 0000-0003-4206-5868 ; 0000-0002-9823-2744 ; 0000-0001-5865-6772 ; 0000-0003-4962-6381 ; 0000-0002-1249-6889 ; 0000-0002-0416-2782 ; 0000-0003-2529-1142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01325-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01325-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03011023$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, W.</creatorcontrib><creatorcontrib>Fazzini, A.</creatorcontrib><creatorcontrib>Chen, S. N.</creatorcontrib><creatorcontrib>Burdonov, K.</creatorcontrib><creatorcontrib>Antici, P.</creatorcontrib><creatorcontrib>Béard, J.</creatorcontrib><creatorcontrib>Bolaños, S.</creatorcontrib><creatorcontrib>Ciardi, A.</creatorcontrib><creatorcontrib>Diab, R.</creatorcontrib><creatorcontrib>Filippov, E. D.</creatorcontrib><creatorcontrib>Kisyov, S.</creatorcontrib><creatorcontrib>Lelasseux, V.</creatorcontrib><creatorcontrib>Miceli, M.</creatorcontrib><creatorcontrib>Moreno, Q.</creatorcontrib><creatorcontrib>Nastasa, V.</creatorcontrib><creatorcontrib>Orlando, S.</creatorcontrib><creatorcontrib>Pikuz, S.</creatorcontrib><creatorcontrib>Popescu, D. C.</creatorcontrib><creatorcontrib>Revet, G.</creatorcontrib><creatorcontrib>Ribeyre, X.</creatorcontrib><creatorcontrib>d’Humières, E.</creatorcontrib><creatorcontrib>Fuchs, J.</creatorcontrib><title>Laboratory evidence for proton energization by collisionless shock surfing</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.</description><subject>639/766/1960/1135</subject><subject>639/766/34/4125</subject><subject>Atomic</subject><subject>Charged particles</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Field strength</subject><subject>General Physics</subject><subject>Laboratories</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protons</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Supernova remnants</subject><subject>Surfing</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kElPwzAQhS0EEqXwBzhF4sTB4C3bsaqgBUXiAmdr4qVNCXGx01bl1-MSVG6cZtH3nmYeQteU3FHCi_sgaJrlmDCKCeUsxbsTNKK5SDETBT099jk_RxchrAgRLKN8hJ4rqJ2H3vl9YraNNp0yiXU-WXvXuy4xnfGL5gv6Jg71PlGubZsQh9aEkISlU-9J2HjbdItLdGahDebqt47R2-PD63SOq5fZ03RSYSUy3mOjVGmZ1qwmYKyypSrTUqeMaJ7lihc1oxqIKqwWBWMaQFnBoVQANVCuMz5Gt4PvElq59s0H-L100Mj5pJKHHeGEUsL4lkb2ZmDjO58bE3q5chvfxfMkS_NSZCLNi0ixgVLeheCNPdpSIg_5yiFfGfOVP_nKXRTxQRQi3C2M_7P-R_UN0J1_4Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yao, W.</creator><creator>Fazzini, A.</creator><creator>Chen, S. N.</creator><creator>Burdonov, K.</creator><creator>Antici, P.</creator><creator>Béard, J.</creator><creator>Bolaños, S.</creator><creator>Ciardi, A.</creator><creator>Diab, R.</creator><creator>Filippov, E. D.</creator><creator>Kisyov, S.</creator><creator>Lelasseux, V.</creator><creator>Miceli, M.</creator><creator>Moreno, Q.</creator><creator>Nastasa, V.</creator><creator>Orlando, S.</creator><creator>Pikuz, S.</creator><creator>Popescu, D. C.</creator><creator>Revet, G.</creator><creator>Ribeyre, X.</creator><creator>d’Humières, E.</creator><creator>Fuchs, J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3463-3343</orcidid><orcidid>https://orcid.org/0000-0002-9235-4492</orcidid><orcidid>https://orcid.org/0000-0002-9234-1210</orcidid><orcidid>https://orcid.org/0000-0001-8774-8860</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0002-6017-9300</orcidid><orcidid>https://orcid.org/0000-0003-2836-540X</orcidid><orcidid>https://orcid.org/0000-0001-9089-6266</orcidid><orcidid>https://orcid.org/0000-0003-0876-8391</orcidid><orcidid>https://orcid.org/0000-0003-4206-5868</orcidid><orcidid>https://orcid.org/0000-0002-9823-2744</orcidid><orcidid>https://orcid.org/0000-0001-5865-6772</orcidid><orcidid>https://orcid.org/0000-0003-4962-6381</orcidid><orcidid>https://orcid.org/0000-0002-1249-6889</orcidid><orcidid>https://orcid.org/0000-0002-0416-2782</orcidid><orcidid>https://orcid.org/0000-0003-2529-1142</orcidid></search><sort><creationdate>20211001</creationdate><title>Laboratory evidence for proton energization by collisionless shock surfing</title><author>Yao, W. ; Fazzini, A. ; Chen, S. N. ; Burdonov, K. ; Antici, P. ; Béard, J. ; Bolaños, S. ; Ciardi, A. ; Diab, R. ; Filippov, E. D. ; Kisyov, S. ; Lelasseux, V. ; Miceli, M. ; Moreno, Q. ; Nastasa, V. ; Orlando, S. ; Pikuz, S. ; Popescu, D. C. ; Revet, G. ; Ribeyre, X. ; d’Humières, E. ; Fuchs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ecc9f2dd2b0aefcf9c959d520d367c38b21da0c8fd4822daacf43a9caaba13d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/1960/1135</topic><topic>639/766/34/4125</topic><topic>Atomic</topic><topic>Charged particles</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Field strength</topic><topic>General Physics</topic><topic>Laboratories</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protons</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Supernova remnants</topic><topic>Surfing</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, W.</creatorcontrib><creatorcontrib>Fazzini, A.</creatorcontrib><creatorcontrib>Chen, S. N.</creatorcontrib><creatorcontrib>Burdonov, K.</creatorcontrib><creatorcontrib>Antici, P.</creatorcontrib><creatorcontrib>Béard, J.</creatorcontrib><creatorcontrib>Bolaños, S.</creatorcontrib><creatorcontrib>Ciardi, A.</creatorcontrib><creatorcontrib>Diab, R.</creatorcontrib><creatorcontrib>Filippov, E. D.</creatorcontrib><creatorcontrib>Kisyov, S.</creatorcontrib><creatorcontrib>Lelasseux, V.</creatorcontrib><creatorcontrib>Miceli, M.</creatorcontrib><creatorcontrib>Moreno, Q.</creatorcontrib><creatorcontrib>Nastasa, V.</creatorcontrib><creatorcontrib>Orlando, S.</creatorcontrib><creatorcontrib>Pikuz, S.</creatorcontrib><creatorcontrib>Popescu, D. C.</creatorcontrib><creatorcontrib>Revet, G.</creatorcontrib><creatorcontrib>Ribeyre, X.</creatorcontrib><creatorcontrib>d’Humières, E.</creatorcontrib><creatorcontrib>Fuchs, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, W.</au><au>Fazzini, A.</au><au>Chen, S. N.</au><au>Burdonov, K.</au><au>Antici, P.</au><au>Béard, J.</au><au>Bolaños, S.</au><au>Ciardi, A.</au><au>Diab, R.</au><au>Filippov, E. D.</au><au>Kisyov, S.</au><au>Lelasseux, V.</au><au>Miceli, M.</au><au>Moreno, Q.</au><au>Nastasa, V.</au><au>Orlando, S.</au><au>Pikuz, S.</au><au>Popescu, D. C.</au><au>Revet, G.</au><au>Ribeyre, X.</au><au>d’Humières, E.</au><au>Fuchs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laboratory evidence for proton energization by collisionless shock surfing</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>1177</spage><epage>1182</epage><pages>1177-1182</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01325-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3463-3343</orcidid><orcidid>https://orcid.org/0000-0002-9235-4492</orcidid><orcidid>https://orcid.org/0000-0002-9234-1210</orcidid><orcidid>https://orcid.org/0000-0001-8774-8860</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0002-6017-9300</orcidid><orcidid>https://orcid.org/0000-0003-2836-540X</orcidid><orcidid>https://orcid.org/0000-0001-9089-6266</orcidid><orcidid>https://orcid.org/0000-0003-0876-8391</orcidid><orcidid>https://orcid.org/0000-0003-4206-5868</orcidid><orcidid>https://orcid.org/0000-0002-9823-2744</orcidid><orcidid>https://orcid.org/0000-0001-5865-6772</orcidid><orcidid>https://orcid.org/0000-0003-4962-6381</orcidid><orcidid>https://orcid.org/0000-0002-1249-6889</orcidid><orcidid>https://orcid.org/0000-0002-0416-2782</orcidid><orcidid>https://orcid.org/0000-0003-2529-1142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-10, Vol.17 (10), p.1177-1182
issn 1745-2473
1745-2481
1476-4636
language eng
recordid cdi_hal_primary_oai_HAL_hal_03011023v1
source SpringerLink Journals; Nature Journals Online
subjects 639/766/1960/1135
639/766/34/4125
Atomic
Charged particles
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Field strength
General Physics
Laboratories
Magnetic fields
Mathematical and Computational Physics
Mathematical models
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Protons
Shock waves
Simulation
Supernova remnants
Surfing
Theoretical
title Laboratory evidence for proton energization by collisionless shock surfing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laboratory%20evidence%20for%20proton%20energization%20by%20collisionless%20shock%20surfing&rft.jtitle=Nature%20physics&rft.au=Yao,%20W.&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=1177&rft.epage=1182&rft.pages=1177-1182&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01325-w&rft_dat=%3Cproquest_hal_p%3E2579464578%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579464578&rft_id=info:pmid/&rfr_iscdi=true