Design of low-altitude Martian orbits using frequency analysis

Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2021-01, Vol.67 (1), p.477-495
Hauptverfasser: Noullez, A., Tsiganis, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 1
container_start_page 477
container_title Advances in space research
container_volume 67
creator Noullez, A.
Tsiganis, K.
description Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.
doi_str_mv 10.1016/j.asr.2020.10.032
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03007909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117720307602</els_id><sourcerecordid>oai_HAL_hal_03007909v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTOZreZLIJQ6p8KFS96XjbZSd0SE91NK_32bqh49DTM4_2GeY-xSw4ZB15cbzITfJZDPu4ZiPyITXiJKuVKlsdsAjmKlHPEU3YWwgaA54gwYbd3FNy6S_omafvv1LSDG7aWkmfjB2ei7is3hGQbXLdOGk9fW-rqfWI60-6DC-fspDFtoIvfOWVvD_evi2W6enl8WsxXaS1QDmnFyaAqQc6snVUFSuRQgMDxC9EURaWoxIYEFxJtlZNU0qKprBGVVJEUU3Z1uPtuWv3p3Yfxe90bp5fzlR41EACoQO149PKDt_Z9CJ6aP4CDHsvSGx3L0mNZoxTLiszNgaEYYufI61C7mJSs81QP2vbuH_oHNdZw2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of low-altitude Martian orbits using frequency analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Noullez, A. ; Tsiganis, K.</creator><creatorcontrib>Noullez, A. ; Tsiganis, K.</creatorcontrib><description>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2020.10.032</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Astrophysics ; Frequency analysis ; Frozen orbits ; Instrumentation and Methods for Astrophysic ; Mars orbits ; Physics ; Satellite orbits ; Sciences of the Universe</subject><ispartof>Advances in space research, 2021-01, Vol.67 (1), p.477-495</ispartof><rights>2020 COSPAR</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</citedby><cites>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</cites><orcidid>0000-0002-0308-5893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2020.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03007909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noullez, A.</creatorcontrib><creatorcontrib>Tsiganis, K.</creatorcontrib><title>Design of low-altitude Martian orbits using frequency analysis</title><title>Advances in space research</title><description>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</description><subject>Astrophysics</subject><subject>Frequency analysis</subject><subject>Frozen orbits</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Mars orbits</subject><subject>Physics</subject><subject>Satellite orbits</subject><subject>Sciences of the Universe</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTOZreZLIJQ6p8KFS96XjbZSd0SE91NK_32bqh49DTM4_2GeY-xSw4ZB15cbzITfJZDPu4ZiPyITXiJKuVKlsdsAjmKlHPEU3YWwgaA54gwYbd3FNy6S_omafvv1LSDG7aWkmfjB2ei7is3hGQbXLdOGk9fW-rqfWI60-6DC-fspDFtoIvfOWVvD_evi2W6enl8WsxXaS1QDmnFyaAqQc6snVUFSuRQgMDxC9EURaWoxIYEFxJtlZNU0qKprBGVVJEUU3Z1uPtuWv3p3Yfxe90bp5fzlR41EACoQO149PKDt_Z9CJ6aP4CDHsvSGx3L0mNZoxTLiszNgaEYYufI61C7mJSs81QP2vbuH_oHNdZw2g</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Noullez, A.</creator><creator>Tsiganis, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0308-5893</orcidid></search><sort><creationdate>20210101</creationdate><title>Design of low-altitude Martian orbits using frequency analysis</title><author>Noullez, A. ; Tsiganis, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Frequency analysis</topic><topic>Frozen orbits</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Mars orbits</topic><topic>Physics</topic><topic>Satellite orbits</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noullez, A.</creatorcontrib><creatorcontrib>Tsiganis, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noullez, A.</au><au>Tsiganis, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of low-altitude Martian orbits using frequency analysis</atitle><jtitle>Advances in space research</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>477</spage><epage>495</epage><pages>477-495</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2020.10.032</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0308-5893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2021-01, Vol.67 (1), p.477-495
issn 0273-1177
1879-1948
language eng
recordid cdi_hal_primary_oai_HAL_hal_03007909v1
source Access via ScienceDirect (Elsevier)
subjects Astrophysics
Frequency analysis
Frozen orbits
Instrumentation and Methods for Astrophysic
Mars orbits
Physics
Satellite orbits
Sciences of the Universe
title Design of low-altitude Martian orbits using frequency analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20low-altitude%20Martian%20orbits%20using%20frequency%20analysis&rft.jtitle=Advances%20in%20space%20research&rft.au=Noullez,%20A.&rft.date=2021-01-01&rft.volume=67&rft.issue=1&rft.spage=477&rft.epage=495&rft.pages=477-495&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2020.10.032&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03007909v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0273117720307602&rfr_iscdi=true