Design of low-altitude Martian orbits using frequency analysis
Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of...
Gespeichert in:
Veröffentlicht in: | Advances in space research 2021-01, Vol.67 (1), p.477-495 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 1 |
container_start_page | 477 |
container_title | Advances in space research |
container_volume | 67 |
creator | Noullez, A. Tsiganis, K. |
description | Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs. |
doi_str_mv | 10.1016/j.asr.2020.10.032 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03007909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117720307602</els_id><sourcerecordid>oai_HAL_hal_03007909v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTOZreZLIJQ6p8KFS96XjbZSd0SE91NK_32bqh49DTM4_2GeY-xSw4ZB15cbzITfJZDPu4ZiPyITXiJKuVKlsdsAjmKlHPEU3YWwgaA54gwYbd3FNy6S_omafvv1LSDG7aWkmfjB2ei7is3hGQbXLdOGk9fW-rqfWI60-6DC-fspDFtoIvfOWVvD_evi2W6enl8WsxXaS1QDmnFyaAqQc6snVUFSuRQgMDxC9EURaWoxIYEFxJtlZNU0qKprBGVVJEUU3Z1uPtuWv3p3Yfxe90bp5fzlR41EACoQO149PKDt_Z9CJ6aP4CDHsvSGx3L0mNZoxTLiszNgaEYYufI61C7mJSs81QP2vbuH_oHNdZw2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of low-altitude Martian orbits using frequency analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Noullez, A. ; Tsiganis, K.</creator><creatorcontrib>Noullez, A. ; Tsiganis, K.</creatorcontrib><description>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2020.10.032</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Astrophysics ; Frequency analysis ; Frozen orbits ; Instrumentation and Methods for Astrophysic ; Mars orbits ; Physics ; Satellite orbits ; Sciences of the Universe</subject><ispartof>Advances in space research, 2021-01, Vol.67 (1), p.477-495</ispartof><rights>2020 COSPAR</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</citedby><cites>FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</cites><orcidid>0000-0002-0308-5893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2020.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03007909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Noullez, A.</creatorcontrib><creatorcontrib>Tsiganis, K.</creatorcontrib><title>Design of low-altitude Martian orbits using frequency analysis</title><title>Advances in space research</title><description>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</description><subject>Astrophysics</subject><subject>Frequency analysis</subject><subject>Frozen orbits</subject><subject>Instrumentation and Methods for Astrophysic</subject><subject>Mars orbits</subject><subject>Physics</subject><subject>Satellite orbits</subject><subject>Sciences of the Universe</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTOZreZLIJQ6p8KFS96XjbZSd0SE91NK_32bqh49DTM4_2GeY-xSw4ZB15cbzITfJZDPu4ZiPyITXiJKuVKlsdsAjmKlHPEU3YWwgaA54gwYbd3FNy6S_omafvv1LSDG7aWkmfjB2ei7is3hGQbXLdOGk9fW-rqfWI60-6DC-fspDFtoIvfOWVvD_evi2W6enl8WsxXaS1QDmnFyaAqQc6snVUFSuRQgMDxC9EURaWoxIYEFxJtlZNU0qKprBGVVJEUU3Z1uPtuWv3p3Yfxe90bp5fzlR41EACoQO149PKDt_Z9CJ6aP4CDHsvSGx3L0mNZoxTLiszNgaEYYufI61C7mJSs81QP2vbuH_oHNdZw2g</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Noullez, A.</creator><creator>Tsiganis, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0308-5893</orcidid></search><sort><creationdate>20210101</creationdate><title>Design of low-altitude Martian orbits using frequency analysis</title><author>Noullez, A. ; Tsiganis, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-b1ea798045dd5b674710603701273f66b9e87fe31347db2e494d7abda3b49a793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Frequency analysis</topic><topic>Frozen orbits</topic><topic>Instrumentation and Methods for Astrophysic</topic><topic>Mars orbits</topic><topic>Physics</topic><topic>Satellite orbits</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noullez, A.</creatorcontrib><creatorcontrib>Tsiganis, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noullez, A.</au><au>Tsiganis, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of low-altitude Martian orbits using frequency analysis</atitle><jtitle>Advances in space research</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>477</spage><epage>495</epage><pages>477-495</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies – or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies – are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony’s Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. An efficient, iterative filtering algorithm, previously applied to lunar orbiters, complements the method and is used to accurately compute the locations of POs/FOs, for a wide range of initial conditions. By defining the ’distance’ of any orbit from the family of POs and using the relative amplitudes of the different components of the motion, we can build ’dynamical fate maps’ that graphically depict the survivability of low-eccentricity, low-altitude orbits at every inclination, and can be used for efficient mission planning. While lowering the altitude generally enhances the effect of tesseral and sectorial gravity harmonics, we find this to have less consequence for low altitude Martian satellites, in contrast with the Lunar case. Hence, a high-degree (≃20th) axisymmetric model is adequate for preliminary mission design at moderate altitudes, but should be complemented at low altitudes by the methods described here. All families of POs and their spectral decompositions can be accurately and effectively computed by continuation in arbitrarily complex Martian gravity models, as our filtering algorithm requires only short integration arcs.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2020.10.032</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0308-5893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1177 |
ispartof | Advances in space research, 2021-01, Vol.67 (1), p.477-495 |
issn | 0273-1177 1879-1948 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03007909v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Astrophysics Frequency analysis Frozen orbits Instrumentation and Methods for Astrophysic Mars orbits Physics Satellite orbits Sciences of the Universe |
title | Design of low-altitude Martian orbits using frequency analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20low-altitude%20Martian%20orbits%20using%20frequency%20analysis&rft.jtitle=Advances%20in%20space%20research&rft.au=Noullez,%20A.&rft.date=2021-01-01&rft.volume=67&rft.issue=1&rft.spage=477&rft.epage=495&rft.pages=477-495&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2020.10.032&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03007909v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0273117720307602&rfr_iscdi=true |