Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain

Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2020, Vol.24 (11-12), p.3059-3071
Hauptverfasser: Martemianov, S., Thomas, A., Adiutantov, N., Denisov, E., Evdokimov, Yu, Hissel, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3071
container_issue 11-12
container_start_page 3059
container_title Journal of solid state electrochemistry
container_volume 24
creator Martemianov, S.
Thomas, A.
Adiutantov, N.
Denisov, E.
Evdokimov, Yu
Hissel, D.
description Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz 
doi_str_mv 10.1007/s10008-020-04759-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03007034v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451399656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEEqXwAqwssWKRcv0zscOuqoYWaRAs2rXlONczLh57sBOkmafHbaqy68bXujrfkeWvaT5SuKAA8kupJ6gWGLQg5KpvT6-aMyo4b0F26vXjnbVKKPW2eVfKPQCVHYWz5rQOaKec7A733ppAYvIFiYkmHIsvJDliyK_1D-JmDMRiCKRMxv4mcxwxk5Ditp38Hkk6YDaTT_Hrk6L4bTTTnJH4SKYdEpfxz4zRHsmY9sbH980bZ0LBD0_zvLn7tr69umk3P6-_X11uWiu4mFpuRifUKKk0EjiiQzmoAZns2SgtG3oljQEOhjLmhOu7FYwDVXaEUXUDlfy8-bx4dyboQ_Z7k486Ga9vLjf6YVfDUNXiL63sp4U95FQfWyZ9n-ZcP6NoJlaU91XfVYotlM2plIzuWUtBP_Shlz507UM_9qFPNcSXUKlw3GL-r34h9Q-F0I74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451399656</pqid></control><display><type>article</type><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><source>SpringerNature Journals</source><creator>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</creator><creatorcontrib>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</creatorcontrib><description>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz &lt;  f  &lt; 10 3  Hz. The reference noise signature of the stack involves white noise at the low-frequency range ( f  &lt; 0.1 Hz), two fractional noises (1/ f α ) with different slopes, and a pronounced peak at the characteristic frequency f  = 1.6 Hz. In the intermediate frequency range (0.1 Hz &lt;  f  &lt; 1 Hz), the slope α 1  = 1.49 and in the high-frequency range ( f  &gt; 10 Hz), the slop α 2  = 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at f  = 0.004 Hz and f  = 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-020-04759-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Automatic ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electric power ; Electrochemical noise ; Electrochemistry ; Energy Storage ; Engineering Sciences ; Fluid mechanics ; Frequency domain analysis ; Frequency ranges ; Fuel cells ; Intermediate frequencies ; Mechanics ; Noise ; Original Paper ; Physical Chemistry ; Physics ; Power spectral density ; Proton exchange membrane fuel cells ; Stack operations ; Thermics ; Water management ; White noise</subject><ispartof>Journal of solid state electrochemistry, 2020, Vol.24 (11-12), p.3059-3071</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</citedby><cites>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</cites><orcidid>0000-0002-4754-8028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-020-04759-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-020-04759-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03007034$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martemianov, S.</creatorcontrib><creatorcontrib>Thomas, A.</creatorcontrib><creatorcontrib>Adiutantov, N.</creatorcontrib><creatorcontrib>Denisov, E.</creatorcontrib><creatorcontrib>Evdokimov, Yu</creatorcontrib><creatorcontrib>Hissel, D.</creatorcontrib><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz &lt;  f  &lt; 10 3  Hz. The reference noise signature of the stack involves white noise at the low-frequency range ( f  &lt; 0.1 Hz), two fractional noises (1/ f α ) with different slopes, and a pronounced peak at the characteristic frequency f  = 1.6 Hz. In the intermediate frequency range (0.1 Hz &lt;  f  &lt; 1 Hz), the slope α 1  = 1.49 and in the high-frequency range ( f  &gt; 10 Hz), the slop α 2  = 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at f  = 0.004 Hz and f  = 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</description><subject>Analytical Chemistry</subject><subject>Automatic</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electric power</subject><subject>Electrochemical noise</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Frequency domain analysis</subject><subject>Frequency ranges</subject><subject>Fuel cells</subject><subject>Intermediate frequencies</subject><subject>Mechanics</subject><subject>Noise</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Power spectral density</subject><subject>Proton exchange membrane fuel cells</subject><subject>Stack operations</subject><subject>Thermics</subject><subject>Water management</subject><subject>White noise</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURiMEEqXwAqwssWKRcv0zscOuqoYWaRAs2rXlONczLh57sBOkmafHbaqy68bXujrfkeWvaT5SuKAA8kupJ6gWGLQg5KpvT6-aMyo4b0F26vXjnbVKKPW2eVfKPQCVHYWz5rQOaKec7A733ppAYvIFiYkmHIsvJDliyK_1D-JmDMRiCKRMxv4mcxwxk5Ditp38Hkk6YDaTT_Hrk6L4bTTTnJH4SKYdEpfxz4zRHsmY9sbH980bZ0LBD0_zvLn7tr69umk3P6-_X11uWiu4mFpuRifUKKk0EjiiQzmoAZns2SgtG3oljQEOhjLmhOu7FYwDVXaEUXUDlfy8-bx4dyboQ_Z7k486Ga9vLjf6YVfDUNXiL63sp4U95FQfWyZ9n-ZcP6NoJlaU91XfVYotlM2plIzuWUtBP_Shlz507UM_9qFPNcSXUKlw3GL-r34h9Q-F0I74</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Martemianov, S.</creator><creator>Thomas, A.</creator><creator>Adiutantov, N.</creator><creator>Denisov, E.</creator><creator>Evdokimov, Yu</creator><creator>Hissel, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4754-8028</orcidid></search><sort><creationdate>2020</creationdate><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><author>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Automatic</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electric power</topic><topic>Electrochemical noise</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Frequency domain analysis</topic><topic>Frequency ranges</topic><topic>Fuel cells</topic><topic>Intermediate frequencies</topic><topic>Mechanics</topic><topic>Noise</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Power spectral density</topic><topic>Proton exchange membrane fuel cells</topic><topic>Stack operations</topic><topic>Thermics</topic><topic>Water management</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martemianov, S.</creatorcontrib><creatorcontrib>Thomas, A.</creatorcontrib><creatorcontrib>Adiutantov, N.</creatorcontrib><creatorcontrib>Denisov, E.</creatorcontrib><creatorcontrib>Evdokimov, Yu</creatorcontrib><creatorcontrib>Hissel, D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martemianov, S.</au><au>Thomas, A.</au><au>Adiutantov, N.</au><au>Denisov, E.</au><au>Evdokimov, Yu</au><au>Hissel, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>11-12</issue><spage>3059</spage><epage>3071</epage><pages>3059-3071</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz &lt;  f  &lt; 10 3  Hz. The reference noise signature of the stack involves white noise at the low-frequency range ( f  &lt; 0.1 Hz), two fractional noises (1/ f α ) with different slopes, and a pronounced peak at the characteristic frequency f  = 1.6 Hz. In the intermediate frequency range (0.1 Hz &lt;  f  &lt; 1 Hz), the slope α 1  = 1.49 and in the high-frequency range ( f  &gt; 10 Hz), the slop α 2  = 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at f  = 0.004 Hz and f  = 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-020-04759-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4754-8028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2020, Vol.24 (11-12), p.3059-3071
issn 1432-8488
1433-0768
language eng
recordid cdi_hal_primary_oai_HAL_hal_03007034v1
source SpringerNature Journals
subjects Analytical Chemistry
Automatic
Characterization and Evaluation of Materials
Charge transfer
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electric power
Electrochemical noise
Electrochemistry
Energy Storage
Engineering Sciences
Fluid mechanics
Frequency domain analysis
Frequency ranges
Fuel cells
Intermediate frequencies
Mechanics
Noise
Original Paper
Physical Chemistry
Physics
Power spectral density
Proton exchange membrane fuel cells
Stack operations
Thermics
Water management
White noise
title Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20noise%20analysis%20of%20a%20PEM%20fuel%20cell%20stack%20under%20long-time%20operation:%20noise%20signature%20in%20the%20frequency%20domain&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Martemianov,%20S.&rft.date=2020&rft.volume=24&rft.issue=11-12&rft.spage=3059&rft.epage=3071&rft.pages=3059-3071&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-020-04759-z&rft_dat=%3Cproquest_hal_p%3E2451399656%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451399656&rft_id=info:pmid/&rfr_iscdi=true