Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain
Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm 2 ) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2020, Vol.24 (11-12), p.3059-3071 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3071 |
---|---|
container_issue | 11-12 |
container_start_page | 3059 |
container_title | Journal of solid state electrochemistry |
container_volume | 24 |
creator | Martemianov, S. Thomas, A. Adiutantov, N. Denisov, E. Evdokimov, Yu Hissel, D. |
description | Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm
2
) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz |
doi_str_mv | 10.1007/s10008-020-04759-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03007034v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451399656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEEqXwAqwssWKRcv0zscOuqoYWaRAs2rXlONczLh57sBOkmafHbaqy68bXujrfkeWvaT5SuKAA8kupJ6gWGLQg5KpvT6-aMyo4b0F26vXjnbVKKPW2eVfKPQCVHYWz5rQOaKec7A733ppAYvIFiYkmHIsvJDliyK_1D-JmDMRiCKRMxv4mcxwxk5Ditp38Hkk6YDaTT_Hrk6L4bTTTnJH4SKYdEpfxz4zRHsmY9sbH980bZ0LBD0_zvLn7tr69umk3P6-_X11uWiu4mFpuRifUKKk0EjiiQzmoAZns2SgtG3oljQEOhjLmhOu7FYwDVXaEUXUDlfy8-bx4dyboQ_Z7k486Ga9vLjf6YVfDUNXiL63sp4U95FQfWyZ9n-ZcP6NoJlaU91XfVYotlM2plIzuWUtBP_Shlz507UM_9qFPNcSXUKlw3GL-r34h9Q-F0I74</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451399656</pqid></control><display><type>article</type><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><source>SpringerNature Journals</source><creator>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</creator><creatorcontrib>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</creatorcontrib><description>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm
2
) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz <
f
< 10
3
Hz. The reference noise signature of the stack involves white noise at the low-frequency range (
f
< 0.1 Hz), two fractional noises (1/
f
α
) with different slopes, and a pronounced peak at the characteristic frequency
f
= 1.6 Hz. In the intermediate frequency range (0.1 Hz <
f
< 1 Hz), the slope
α
1
= 1.49 and in the high-frequency range (
f
> 10 Hz), the slop
α
2
= 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at
f
= 0.004 Hz and
f
= 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-020-04759-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Automatic ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electric power ; Electrochemical noise ; Electrochemistry ; Energy Storage ; Engineering Sciences ; Fluid mechanics ; Frequency domain analysis ; Frequency ranges ; Fuel cells ; Intermediate frequencies ; Mechanics ; Noise ; Original Paper ; Physical Chemistry ; Physics ; Power spectral density ; Proton exchange membrane fuel cells ; Stack operations ; Thermics ; Water management ; White noise</subject><ispartof>Journal of solid state electrochemistry, 2020, Vol.24 (11-12), p.3059-3071</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</citedby><cites>FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</cites><orcidid>0000-0002-4754-8028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-020-04759-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-020-04759-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03007034$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martemianov, S.</creatorcontrib><creatorcontrib>Thomas, A.</creatorcontrib><creatorcontrib>Adiutantov, N.</creatorcontrib><creatorcontrib>Denisov, E.</creatorcontrib><creatorcontrib>Evdokimov, Yu</creatorcontrib><creatorcontrib>Hissel, D.</creatorcontrib><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm
2
) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz <
f
< 10
3
Hz. The reference noise signature of the stack involves white noise at the low-frequency range (
f
< 0.1 Hz), two fractional noises (1/
f
α
) with different slopes, and a pronounced peak at the characteristic frequency
f
= 1.6 Hz. In the intermediate frequency range (0.1 Hz <
f
< 1 Hz), the slope
α
1
= 1.49 and in the high-frequency range (
f
> 10 Hz), the slop
α
2
= 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at
f
= 0.004 Hz and
f
= 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</description><subject>Analytical Chemistry</subject><subject>Automatic</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electric power</subject><subject>Electrochemical noise</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Frequency domain analysis</subject><subject>Frequency ranges</subject><subject>Fuel cells</subject><subject>Intermediate frequencies</subject><subject>Mechanics</subject><subject>Noise</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Power spectral density</subject><subject>Proton exchange membrane fuel cells</subject><subject>Stack operations</subject><subject>Thermics</subject><subject>Water management</subject><subject>White noise</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURiMEEqXwAqwssWKRcv0zscOuqoYWaRAs2rXlONczLh57sBOkmafHbaqy68bXujrfkeWvaT5SuKAA8kupJ6gWGLQg5KpvT6-aMyo4b0F26vXjnbVKKPW2eVfKPQCVHYWz5rQOaKec7A733ppAYvIFiYkmHIsvJDliyK_1D-JmDMRiCKRMxv4mcxwxk5Ditp38Hkk6YDaTT_Hrk6L4bTTTnJH4SKYdEpfxz4zRHsmY9sbH980bZ0LBD0_zvLn7tr69umk3P6-_X11uWiu4mFpuRifUKKk0EjiiQzmoAZns2SgtG3oljQEOhjLmhOu7FYwDVXaEUXUDlfy8-bx4dyboQ_Z7k486Ga9vLjf6YVfDUNXiL63sp4U95FQfWyZ9n-ZcP6NoJlaU91XfVYotlM2plIzuWUtBP_Shlz507UM_9qFPNcSXUKlw3GL-r34h9Q-F0I74</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Martemianov, S.</creator><creator>Thomas, A.</creator><creator>Adiutantov, N.</creator><creator>Denisov, E.</creator><creator>Evdokimov, Yu</creator><creator>Hissel, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4754-8028</orcidid></search><sort><creationdate>2020</creationdate><title>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</title><author>Martemianov, S. ; Thomas, A. ; Adiutantov, N. ; Denisov, E. ; Evdokimov, Yu ; Hissel, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-3adf48d717a703eefe7b8be2792d7c2b987aa030a122f4f9650db18cd0d86b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Automatic</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electric power</topic><topic>Electrochemical noise</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Frequency domain analysis</topic><topic>Frequency ranges</topic><topic>Fuel cells</topic><topic>Intermediate frequencies</topic><topic>Mechanics</topic><topic>Noise</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Power spectral density</topic><topic>Proton exchange membrane fuel cells</topic><topic>Stack operations</topic><topic>Thermics</topic><topic>Water management</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martemianov, S.</creatorcontrib><creatorcontrib>Thomas, A.</creatorcontrib><creatorcontrib>Adiutantov, N.</creatorcontrib><creatorcontrib>Denisov, E.</creatorcontrib><creatorcontrib>Evdokimov, Yu</creatorcontrib><creatorcontrib>Hissel, D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martemianov, S.</au><au>Thomas, A.</au><au>Adiutantov, N.</au><au>Denisov, E.</au><au>Evdokimov, Yu</au><au>Hissel, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>11-12</issue><spage>3059</spage><epage>3071</epage><pages>3059-3071</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm
2
) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz <
f
< 10
3
Hz. The reference noise signature of the stack involves white noise at the low-frequency range (
f
< 0.1 Hz), two fractional noises (1/
f
α
) with different slopes, and a pronounced peak at the characteristic frequency
f
= 1.6 Hz. In the intermediate frequency range (0.1 Hz <
f
< 1 Hz), the slope
α
1
= 1.49 and in the high-frequency range (
f
> 10 Hz), the slop
α
2
= 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at
f
= 0.004 Hz and
f
= 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-020-04759-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4754-8028</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2020, Vol.24 (11-12), p.3059-3071 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03007034v1 |
source | SpringerNature Journals |
subjects | Analytical Chemistry Automatic Characterization and Evaluation of Materials Charge transfer Chemistry Chemistry and Materials Science Condensed Matter Physics Electric power Electrochemical noise Electrochemistry Energy Storage Engineering Sciences Fluid mechanics Frequency domain analysis Frequency ranges Fuel cells Intermediate frequencies Mechanics Noise Original Paper Physical Chemistry Physics Power spectral density Proton exchange membrane fuel cells Stack operations Thermics Water management White noise |
title | Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20noise%20analysis%20of%20a%20PEM%20fuel%20cell%20stack%20under%20long-time%20operation:%20noise%20signature%20in%20the%20frequency%20domain&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Martemianov,%20S.&rft.date=2020&rft.volume=24&rft.issue=11-12&rft.spage=3059&rft.epage=3071&rft.pages=3059-3071&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-020-04759-z&rft_dat=%3Cproquest_hal_p%3E2451399656%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451399656&rft_id=info:pmid/&rfr_iscdi=true |