Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data
Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmos...
Gespeichert in:
Veröffentlicht in: | Global biogeochemical cycles 2021-11, Vol.35 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Global biogeochemical cycles |
container_volume | 35 |
creator | Horner, T. J. Little, S. H. Conway, T. M. Farmer, J. R. Hertzberg, J. E. Janssen, D. J. Lough, A. J. M. McKay, J. L. Tessin, A. Galer, S. J. G. Jaccard, S. L. Lacan, F. Paytan, A. Wuttig, K. |
description | Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.
Key Points
Distributions, drivers, and depositional archives described for iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver
Cadmium, barium, nickel, and chromium isotopes offer the most promise as paleoproductivity tracers, but key uncertainties remain
Future priorities include quantification of “missing” flux terms, constraining circulation influences, and identifying sedimentary archives |
doi_str_mv | 10.1029/2020GB006814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03003951v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600832046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4445-3d1c25cd28e9077ef7807b2cfc92d58543321bafa01ca50cb4a4e2f12b39fa343</originalsourceid><addsrcrecordid>eNp9kMFOGzEQhi1EJQLtjQew1FMltozH9ma3t01IA1IqUAlna-L1FqOwDvYmbW59hD4jT8JGqRAnTiP9-uaf-X_GTgV8FYDlOQLCdASQF0IdsIEolcpKRHXIBlAUeZajzI_YcUoPAEJpXQ7YauQD2c5vHJ9Hso7_cB0tE6e25vN75yO_SqELK9dLid_Q0oVVDPV6t-K7Lb-J4Y936RuvWl6l5FJ6dG3H75Jvf_Hp5Hr-sxpPbp___ptE4hfU0Uf2oekPuE__5wm7-z6Zjy-z2fX0alzNMlJK6UzWwqK2NRauhOHQNcMChgu0jS2x1oVWUqJYUEMgLGmwC0XKYSNwIcuGpJIn7Mve956WZhX9I8WtCeTNZTUzOw0kgCy12GDPft6zfbSntUudeQjr2PbvGcwBComg8p4621M2hpSia15tBZhd_-Zt_z2Oe_y3X7rtu6yZjsYohNTyBavJhVE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600832046</pqid></control><display><type>article</type><title>Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Horner, T. J. ; Little, S. H. ; Conway, T. M. ; Farmer, J. R. ; Hertzberg, J. E. ; Janssen, D. J. ; Lough, A. J. M. ; McKay, J. L. ; Tessin, A. ; Galer, S. J. G. ; Jaccard, S. L. ; Lacan, F. ; Paytan, A. ; Wuttig, K.</creator><creatorcontrib>Horner, T. J. ; Little, S. H. ; Conway, T. M. ; Farmer, J. R. ; Hertzberg, J. E. ; Janssen, D. J. ; Lough, A. J. M. ; McKay, J. L. ; Tessin, A. ; Galer, S. J. G. ; Jaccard, S. L. ; Lacan, F. ; Paytan, A. ; Wuttig, K. ; GEOTRACES–PAGES Biological Productivity Working Group Members</creatorcontrib><description>Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.
Key Points
Distributions, drivers, and depositional archives described for iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver
Cadmium, barium, nickel, and chromium isotopes offer the most promise as paleoproductivity tracers, but key uncertainties remain
Future priorities include quantification of “missing” flux terms, constraining circulation influences, and identifying sedimentary archives</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>EISSN: 1944-8224</identifier><identifier>DOI: 10.1029/2020GB006814</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Archives & records ; Barium ; Biogeochemical cycle ; Biogeochemical cycles ; Biological activity ; biological pump ; Cadmium ; Carbon ; Carbon dioxide ; Carbon dioxide concentration ; Chromium ; Chromium isotopes ; Climate ; Copper ; Earth ; Environmental Sciences ; Heavy metals ; History ; Iron ; Isotopes ; marine chemistry ; micronutrients ; Molybdenum ; Nickel ; Nutrient sources ; Oceans ; Organic carbon ; Oxidoreductions ; paleoceanography ; Particulate organic carbon ; Phytoplankton ; Plankton ; Productivity ; Proxies ; Redox properties ; Scavenging ; Silver ; Trace metals ; Tracers ; Zinc</subject><ispartof>Global biogeochemical cycles, 2021-11, Vol.35 (11), p.n/a</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4445-3d1c25cd28e9077ef7807b2cfc92d58543321bafa01ca50cb4a4e2f12b39fa343</citedby><cites>FETCH-LOGICAL-a4445-3d1c25cd28e9077ef7807b2cfc92d58543321bafa01ca50cb4a4e2f12b39fa343</cites><orcidid>0000-0001-6437-5977 ; 0000-0002-3069-9786 ; 0000-0003-4010-5918 ; 0000-0001-5200-6429 ; 0000-0002-9091-8936 ; 0000-0003-0545-9497 ; 0000-0001-8360-4712 ; 0000-0002-8095-9064 ; 0000-0001-6794-2279 ; 0000-0003-4548-2819 ; 0000-0002-5793-0896 ; 0000-0002-9957-2636 ; 0000-0001-8657-8484 ; 0000-0003-1784-0391 ; 0000-0001-8983-9571 ; 0000-0003-1238-8412 ; 0000-0002-3078-1253 ; 0000-0003-3664-5049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GB006814$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GB006814$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03003951$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Horner, T. J.</creatorcontrib><creatorcontrib>Little, S. H.</creatorcontrib><creatorcontrib>Conway, T. M.</creatorcontrib><creatorcontrib>Farmer, J. R.</creatorcontrib><creatorcontrib>Hertzberg, J. E.</creatorcontrib><creatorcontrib>Janssen, D. J.</creatorcontrib><creatorcontrib>Lough, A. J. M.</creatorcontrib><creatorcontrib>McKay, J. L.</creatorcontrib><creatorcontrib>Tessin, A.</creatorcontrib><creatorcontrib>Galer, S. J. G.</creatorcontrib><creatorcontrib>Jaccard, S. L.</creatorcontrib><creatorcontrib>Lacan, F.</creatorcontrib><creatorcontrib>Paytan, A.</creatorcontrib><creatorcontrib>Wuttig, K.</creatorcontrib><creatorcontrib>GEOTRACES–PAGES Biological Productivity Working Group Members</creatorcontrib><title>Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data</title><title>Global biogeochemical cycles</title><description>Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.
Key Points
Distributions, drivers, and depositional archives described for iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver
Cadmium, barium, nickel, and chromium isotopes offer the most promise as paleoproductivity tracers, but key uncertainties remain
Future priorities include quantification of “missing” flux terms, constraining circulation influences, and identifying sedimentary archives</description><subject>Archives & records</subject><subject>Barium</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biological activity</subject><subject>biological pump</subject><subject>Cadmium</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chromium</subject><subject>Chromium isotopes</subject><subject>Climate</subject><subject>Copper</subject><subject>Earth</subject><subject>Environmental Sciences</subject><subject>Heavy metals</subject><subject>History</subject><subject>Iron</subject><subject>Isotopes</subject><subject>marine chemistry</subject><subject>micronutrients</subject><subject>Molybdenum</subject><subject>Nickel</subject><subject>Nutrient sources</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Oxidoreductions</subject><subject>paleoceanography</subject><subject>Particulate organic carbon</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Productivity</subject><subject>Proxies</subject><subject>Redox properties</subject><subject>Scavenging</subject><subject>Silver</subject><subject>Trace metals</subject><subject>Tracers</subject><subject>Zinc</subject><issn>0886-6236</issn><issn>1944-9224</issn><issn>1944-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMFOGzEQhi1EJQLtjQew1FMltozH9ma3t01IA1IqUAlna-L1FqOwDvYmbW59hD4jT8JGqRAnTiP9-uaf-X_GTgV8FYDlOQLCdASQF0IdsIEolcpKRHXIBlAUeZajzI_YcUoPAEJpXQ7YauQD2c5vHJ9Hso7_cB0tE6e25vN75yO_SqELK9dLid_Q0oVVDPV6t-K7Lb-J4Y936RuvWl6l5FJ6dG3H75Jvf_Hp5Hr-sxpPbp___ptE4hfU0Uf2oekPuE__5wm7-z6Zjy-z2fX0alzNMlJK6UzWwqK2NRauhOHQNcMChgu0jS2x1oVWUqJYUEMgLGmwC0XKYSNwIcuGpJIn7Mve956WZhX9I8WtCeTNZTUzOw0kgCy12GDPft6zfbSntUudeQjr2PbvGcwBComg8p4621M2hpSia15tBZhd_-Zt_z2Oe_y3X7rtu6yZjsYohNTyBavJhVE</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Horner, T. J.</creator><creator>Little, S. H.</creator><creator>Conway, T. M.</creator><creator>Farmer, J. R.</creator><creator>Hertzberg, J. E.</creator><creator>Janssen, D. J.</creator><creator>Lough, A. J. M.</creator><creator>McKay, J. L.</creator><creator>Tessin, A.</creator><creator>Galer, S. J. G.</creator><creator>Jaccard, S. L.</creator><creator>Lacan, F.</creator><creator>Paytan, A.</creator><creator>Wuttig, K.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6437-5977</orcidid><orcidid>https://orcid.org/0000-0002-3069-9786</orcidid><orcidid>https://orcid.org/0000-0003-4010-5918</orcidid><orcidid>https://orcid.org/0000-0001-5200-6429</orcidid><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-0545-9497</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-8095-9064</orcidid><orcidid>https://orcid.org/0000-0001-6794-2279</orcidid><orcidid>https://orcid.org/0000-0003-4548-2819</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0002-9957-2636</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-1784-0391</orcidid><orcidid>https://orcid.org/0000-0001-8983-9571</orcidid><orcidid>https://orcid.org/0000-0003-1238-8412</orcidid><orcidid>https://orcid.org/0000-0002-3078-1253</orcidid><orcidid>https://orcid.org/0000-0003-3664-5049</orcidid></search><sort><creationdate>202111</creationdate><title>Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data</title><author>Horner, T. J. ; Little, S. H. ; Conway, T. M. ; Farmer, J. R. ; Hertzberg, J. E. ; Janssen, D. J. ; Lough, A. J. M. ; McKay, J. L. ; Tessin, A. ; Galer, S. J. G. ; Jaccard, S. L. ; Lacan, F. ; Paytan, A. ; Wuttig, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4445-3d1c25cd28e9077ef7807b2cfc92d58543321bafa01ca50cb4a4e2f12b39fa343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Archives & records</topic><topic>Barium</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biological activity</topic><topic>biological pump</topic><topic>Cadmium</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chromium</topic><topic>Chromium isotopes</topic><topic>Climate</topic><topic>Copper</topic><topic>Earth</topic><topic>Environmental Sciences</topic><topic>Heavy metals</topic><topic>History</topic><topic>Iron</topic><topic>Isotopes</topic><topic>marine chemistry</topic><topic>micronutrients</topic><topic>Molybdenum</topic><topic>Nickel</topic><topic>Nutrient sources</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Oxidoreductions</topic><topic>paleoceanography</topic><topic>Particulate organic carbon</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Productivity</topic><topic>Proxies</topic><topic>Redox properties</topic><topic>Scavenging</topic><topic>Silver</topic><topic>Trace metals</topic><topic>Tracers</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horner, T. J.</creatorcontrib><creatorcontrib>Little, S. H.</creatorcontrib><creatorcontrib>Conway, T. M.</creatorcontrib><creatorcontrib>Farmer, J. R.</creatorcontrib><creatorcontrib>Hertzberg, J. E.</creatorcontrib><creatorcontrib>Janssen, D. J.</creatorcontrib><creatorcontrib>Lough, A. J. M.</creatorcontrib><creatorcontrib>McKay, J. L.</creatorcontrib><creatorcontrib>Tessin, A.</creatorcontrib><creatorcontrib>Galer, S. J. G.</creatorcontrib><creatorcontrib>Jaccard, S. L.</creatorcontrib><creatorcontrib>Lacan, F.</creatorcontrib><creatorcontrib>Paytan, A.</creatorcontrib><creatorcontrib>Wuttig, K.</creatorcontrib><creatorcontrib>GEOTRACES–PAGES Biological Productivity Working Group Members</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horner, T. J.</au><au>Little, S. H.</au><au>Conway, T. M.</au><au>Farmer, J. R.</au><au>Hertzberg, J. E.</au><au>Janssen, D. J.</au><au>Lough, A. J. M.</au><au>McKay, J. L.</au><au>Tessin, A.</au><au>Galer, S. J. G.</au><au>Jaccard, S. L.</au><au>Lacan, F.</au><au>Paytan, A.</au><au>Wuttig, K.</au><aucorp>GEOTRACES–PAGES Biological Productivity Working Group Members</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2021-11</date><risdate>2021</risdate><volume>35</volume><issue>11</issue><epage>n/a</epage><issn>0886-6236</issn><eissn>1944-9224</eissn><eissn>1944-8224</eissn><abstract>Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.
Key Points
Distributions, drivers, and depositional archives described for iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver
Cadmium, barium, nickel, and chromium isotopes offer the most promise as paleoproductivity tracers, but key uncertainties remain
Future priorities include quantification of “missing” flux terms, constraining circulation influences, and identifying sedimentary archives</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020GB006814</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0001-6437-5977</orcidid><orcidid>https://orcid.org/0000-0002-3069-9786</orcidid><orcidid>https://orcid.org/0000-0003-4010-5918</orcidid><orcidid>https://orcid.org/0000-0001-5200-6429</orcidid><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-0545-9497</orcidid><orcidid>https://orcid.org/0000-0001-8360-4712</orcidid><orcidid>https://orcid.org/0000-0002-8095-9064</orcidid><orcidid>https://orcid.org/0000-0001-6794-2279</orcidid><orcidid>https://orcid.org/0000-0003-4548-2819</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><orcidid>https://orcid.org/0000-0002-9957-2636</orcidid><orcidid>https://orcid.org/0000-0001-8657-8484</orcidid><orcidid>https://orcid.org/0000-0003-1784-0391</orcidid><orcidid>https://orcid.org/0000-0001-8983-9571</orcidid><orcidid>https://orcid.org/0000-0003-1238-8412</orcidid><orcidid>https://orcid.org/0000-0002-3078-1253</orcidid><orcidid>https://orcid.org/0000-0003-3664-5049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-6236 |
ispartof | Global biogeochemical cycles, 2021-11, Vol.35 (11), p.n/a |
issn | 0886-6236 1944-9224 1944-8224 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03003951v2 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Archives & records Barium Biogeochemical cycle Biogeochemical cycles Biological activity biological pump Cadmium Carbon Carbon dioxide Carbon dioxide concentration Chromium Chromium isotopes Climate Copper Earth Environmental Sciences Heavy metals History Iron Isotopes marine chemistry micronutrients Molybdenum Nickel Nutrient sources Oceans Organic carbon Oxidoreductions paleoceanography Particulate organic carbon Phytoplankton Plankton Productivity Proxies Redox properties Scavenging Silver Trace metals Tracers Zinc |
title | Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactive%20Trace%20Metals%20and%20Their%20Isotopes%20as%20Paleoproductivity%20Proxies:%20An%20Assessment%20Using%20GEOTRACES%E2%80%90Era%20Data&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Horner,%20T.%20J.&rft.aucorp=GEOTRACES%E2%80%93PAGES%20Biological%20Productivity%20Working%20Group%20Members&rft.date=2021-11&rft.volume=35&rft.issue=11&rft.epage=n/a&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2020GB006814&rft_dat=%3Cproquest_hal_p%3E2600832046%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600832046&rft_id=info:pmid/&rfr_iscdi=true |