Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations
Using burst mode Magnetospheric Multiscale (MMS) observations in the plasma sheet (PS), we study the dynamics of electron anisotropy and its relation to quasi‐parallel narrowband whistler bursts in 37 dipolarization fronts (DFs) propagating in the Earth's magnetotail along with fast flows at −2...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2020-09, Vol.125 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of geophysical research. Space physics |
container_volume | 125 |
creator | Grigorenko, E. E. Malykhin, A. Y. Shklyar, D. R. Fadanelli, S. Lavraud, B. Panov, E. V. Avanov, L. Giles, B. Le Contel, O. |
description | Using burst mode Magnetospheric Multiscale (MMS) observations in the plasma sheet (PS), we study the dynamics of electron anisotropy and its relation to quasi‐parallel narrowband whistler bursts in 37 dipolarization fronts (DFs) propagating in the Earth's magnetotail along with fast flows at −25 RE ≤ X ≤ −17 RE. The bursts were observed at the DFs and behind them in the dipolarizing flux bundle (DFB) region with frequencies fpeak ~ (0.1–0.6) fce ( fce is electron gyrofrequency) and durations approximately a few seconds. The majority of the whistler waves were associated with perpendicular electron temperature anisotropy TPER/TPAR > 1, and the value of this anisotropy decreased by the end of the bursts suggesting electron scattering by the waves. We found that the major contribution to the growth rate of whistler waves is made by resonant electrons with energies Wres ~ 1–5 keV and pitch angles αres ~ 40–75° and ~100–135°. In the majority of cases, the largest Wres was observed at the DF and immediately behind it, while in the DFB the Wres decreased. The sources of the majority of whistler bursts were not confined near the neutral plane but could be extended into the PS where the perpendicular anisotropy of the local electron distribution provided the positive growth rate of the whistler waves. We show that the observed whistler waves play a significant role in the dynamics of electron velocity distribution in DFs, leading to energy exchange between various parts of electron population and constraining temperature anisotropy of electron distribution.
Key Points
Electron distribution function is highly variable on time scales of short narrowband quasi‐parallel whistler bursts at and behind DFs
Electrons with energies 1–5 keV and pitch angles ~40–75° and 100–135° make the major contribution to the growth rate of these waves
The source of the wave bursts is spread out in space and not confined near the neutral plane |
doi_str_mv | 10.1029/2020JA028268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03002458v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450819433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4221-a4fc08028fa0e0e46d82df3e3009a883854ba357e537007754bfc0a77bc2c27c3</originalsourceid><addsrcrecordid>eNp9kc9qGzEQxpfSQEySWx5A0EMp1OmstOvV9rYkduxgE8gffBRjWetV2K5cSXZJ36Pv23G2KTlFF30a_b4PaSZJzlO4SIGX3zhwuKmASz6SH5IBT0flsMyAf3zVQsJxchbCE9CSVErzQfJn1u1NiHaD0bqOuZqNW6OjJ31lQ_R2tXu5mOw6fRCBVSE4bTGaNVva2LBlQ1xrPFsiJTGMZNy6Fr393WdOKCwGZjsWG8PG6GPzObAFbjoTXUTbfmeLxT27XQXj9y-WcJoc1dgGc_ZvP0keJ-OHy-lwfns9u6zmQ51xng4xqzVI-nKNYMBko7Xk61oYAVCilELm2QpFXphcFABFQUcyYFGsNNe80OIk-dLnNtiqrbc_0D8rh1ZNq7k61ICieJbLfUrsp57devdzRz1TT27nO3qeIoIaWmZCEPW1p7R3IXhT_49NQR3mpN7OiXDR479sa57fZdXN9V2V5-UoFX8BbkaUfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450819433</pqid></control><display><type>article</type><title>Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grigorenko, E. E. ; Malykhin, A. Y. ; Shklyar, D. R. ; Fadanelli, S. ; Lavraud, B. ; Panov, E. V. ; Avanov, L. ; Giles, B. ; Le Contel, O.</creator><creatorcontrib>Grigorenko, E. E. ; Malykhin, A. Y. ; Shklyar, D. R. ; Fadanelli, S. ; Lavraud, B. ; Panov, E. V. ; Avanov, L. ; Giles, B. ; Le Contel, O.</creatorcontrib><description>Using burst mode Magnetospheric Multiscale (MMS) observations in the plasma sheet (PS), we study the dynamics of electron anisotropy and its relation to quasi‐parallel narrowband whistler bursts in 37 dipolarization fronts (DFs) propagating in the Earth's magnetotail along with fast flows at −25 RE ≤ X ≤ −17 RE. The bursts were observed at the DFs and behind them in the dipolarizing flux bundle (DFB) region with frequencies fpeak ~ (0.1–0.6) fce ( fce is electron gyrofrequency) and durations approximately a few seconds. The majority of the whistler waves were associated with perpendicular electron temperature anisotropy TPER/TPAR > 1, and the value of this anisotropy decreased by the end of the bursts suggesting electron scattering by the waves. We found that the major contribution to the growth rate of whistler waves is made by resonant electrons with energies Wres ~ 1–5 keV and pitch angles αres ~ 40–75° and ~100–135°. In the majority of cases, the largest Wres was observed at the DF and immediately behind it, while in the DFB the Wres decreased. The sources of the majority of whistler bursts were not confined near the neutral plane but could be extended into the PS where the perpendicular anisotropy of the local electron distribution provided the positive growth rate of the whistler waves. We show that the observed whistler waves play a significant role in the dynamics of electron velocity distribution in DFs, leading to energy exchange between various parts of electron population and constraining temperature anisotropy of electron distribution.
Key Points
Electron distribution function is highly variable on time scales of short narrowband quasi‐parallel whistler bursts at and behind DFs
Electrons with energies 1–5 keV and pitch angles ~40–75° and 100–135° make the major contribution to the growth rate of these waves
The source of the wave bursts is spread out in space and not confined near the neutral plane</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2020JA028268</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Astrophysics ; Bursts ; dipolarizations ; Distribution functions ; Earth and Planetary Astrophysics ; Earth magnetosphere ; electron distirbutions ; Electron distribution ; Electron energy ; Electron velocity distribution ; Energy transfer ; Growth rate ; Gyrofrequency ; magnetotail ; Magnetotails ; Narrowband ; Physics ; Pitch (inclination) ; plasma Sheet ; Velocity distribution ; Waves ; Whistler waves</subject><ispartof>Journal of geophysical research. Space physics, 2020-09, Vol.125 (9), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4221-a4fc08028fa0e0e46d82df3e3009a883854ba357e537007754bfc0a77bc2c27c3</citedby><cites>FETCH-LOGICAL-c4221-a4fc08028fa0e0e46d82df3e3009a883854ba357e537007754bfc0a77bc2c27c3</cites><orcidid>0000-0001-8054-825X ; 0000-0003-0670-4642 ; 0000-0001-8626-547X ; 0000-0001-6807-8494 ; 0000-0003-3609-235X ; 0000-0003-2357-4851 ; 0000-0003-2713-7966 ; 0000-0002-6516-6058 ; 0000-0002-9968-5083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JA028268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JA028268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03002458$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigorenko, E. E.</creatorcontrib><creatorcontrib>Malykhin, A. Y.</creatorcontrib><creatorcontrib>Shklyar, D. R.</creatorcontrib><creatorcontrib>Fadanelli, S.</creatorcontrib><creatorcontrib>Lavraud, B.</creatorcontrib><creatorcontrib>Panov, E. V.</creatorcontrib><creatorcontrib>Avanov, L.</creatorcontrib><creatorcontrib>Giles, B.</creatorcontrib><creatorcontrib>Le Contel, O.</creatorcontrib><title>Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations</title><title>Journal of geophysical research. Space physics</title><description>Using burst mode Magnetospheric Multiscale (MMS) observations in the plasma sheet (PS), we study the dynamics of electron anisotropy and its relation to quasi‐parallel narrowband whistler bursts in 37 dipolarization fronts (DFs) propagating in the Earth's magnetotail along with fast flows at −25 RE ≤ X ≤ −17 RE. The bursts were observed at the DFs and behind them in the dipolarizing flux bundle (DFB) region with frequencies fpeak ~ (0.1–0.6) fce ( fce is electron gyrofrequency) and durations approximately a few seconds. The majority of the whistler waves were associated with perpendicular electron temperature anisotropy TPER/TPAR > 1, and the value of this anisotropy decreased by the end of the bursts suggesting electron scattering by the waves. We found that the major contribution to the growth rate of whistler waves is made by resonant electrons with energies Wres ~ 1–5 keV and pitch angles αres ~ 40–75° and ~100–135°. In the majority of cases, the largest Wres was observed at the DF and immediately behind it, while in the DFB the Wres decreased. The sources of the majority of whistler bursts were not confined near the neutral plane but could be extended into the PS where the perpendicular anisotropy of the local electron distribution provided the positive growth rate of the whistler waves. We show that the observed whistler waves play a significant role in the dynamics of electron velocity distribution in DFs, leading to energy exchange between various parts of electron population and constraining temperature anisotropy of electron distribution.
Key Points
Electron distribution function is highly variable on time scales of short narrowband quasi‐parallel whistler bursts at and behind DFs
Electrons with energies 1–5 keV and pitch angles ~40–75° and 100–135° make the major contribution to the growth rate of these waves
The source of the wave bursts is spread out in space and not confined near the neutral plane</description><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Bursts</subject><subject>dipolarizations</subject><subject>Distribution functions</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth magnetosphere</subject><subject>electron distirbutions</subject><subject>Electron distribution</subject><subject>Electron energy</subject><subject>Electron velocity distribution</subject><subject>Energy transfer</subject><subject>Growth rate</subject><subject>Gyrofrequency</subject><subject>magnetotail</subject><subject>Magnetotails</subject><subject>Narrowband</subject><subject>Physics</subject><subject>Pitch (inclination)</subject><subject>plasma Sheet</subject><subject>Velocity distribution</subject><subject>Waves</subject><subject>Whistler waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qGzEQxpfSQEySWx5A0EMp1OmstOvV9rYkduxgE8gffBRjWetV2K5cSXZJ36Pv23G2KTlFF30a_b4PaSZJzlO4SIGX3zhwuKmASz6SH5IBT0flsMyAf3zVQsJxchbCE9CSVErzQfJn1u1NiHaD0bqOuZqNW6OjJ31lQ_R2tXu5mOw6fRCBVSE4bTGaNVva2LBlQ1xrPFsiJTGMZNy6Fr393WdOKCwGZjsWG8PG6GPzObAFbjoTXUTbfmeLxT27XQXj9y-WcJoc1dgGc_ZvP0keJ-OHy-lwfns9u6zmQ51xng4xqzVI-nKNYMBko7Xk61oYAVCilELm2QpFXphcFABFQUcyYFGsNNe80OIk-dLnNtiqrbc_0D8rh1ZNq7k61ICieJbLfUrsp57devdzRz1TT27nO3qeIoIaWmZCEPW1p7R3IXhT_49NQR3mpN7OiXDR479sa57fZdXN9V2V5-UoFX8BbkaUfw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Grigorenko, E. E.</creator><creator>Malykhin, A. Y.</creator><creator>Shklyar, D. R.</creator><creator>Fadanelli, S.</creator><creator>Lavraud, B.</creator><creator>Panov, E. V.</creator><creator>Avanov, L.</creator><creator>Giles, B.</creator><creator>Le Contel, O.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union/Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0003-0670-4642</orcidid><orcidid>https://orcid.org/0000-0001-8626-547X</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0003-3609-235X</orcidid><orcidid>https://orcid.org/0000-0003-2357-4851</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0002-6516-6058</orcidid><orcidid>https://orcid.org/0000-0002-9968-5083</orcidid></search><sort><creationdate>202009</creationdate><title>Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations</title><author>Grigorenko, E. E. ; Malykhin, A. Y. ; Shklyar, D. R. ; Fadanelli, S. ; Lavraud, B. ; Panov, E. V. ; Avanov, L. ; Giles, B. ; Le Contel, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4221-a4fc08028fa0e0e46d82df3e3009a883854ba357e537007754bfc0a77bc2c27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Bursts</topic><topic>dipolarizations</topic><topic>Distribution functions</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth magnetosphere</topic><topic>electron distirbutions</topic><topic>Electron distribution</topic><topic>Electron energy</topic><topic>Electron velocity distribution</topic><topic>Energy transfer</topic><topic>Growth rate</topic><topic>Gyrofrequency</topic><topic>magnetotail</topic><topic>Magnetotails</topic><topic>Narrowband</topic><topic>Physics</topic><topic>Pitch (inclination)</topic><topic>plasma Sheet</topic><topic>Velocity distribution</topic><topic>Waves</topic><topic>Whistler waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorenko, E. E.</creatorcontrib><creatorcontrib>Malykhin, A. Y.</creatorcontrib><creatorcontrib>Shklyar, D. R.</creatorcontrib><creatorcontrib>Fadanelli, S.</creatorcontrib><creatorcontrib>Lavraud, B.</creatorcontrib><creatorcontrib>Panov, E. V.</creatorcontrib><creatorcontrib>Avanov, L.</creatorcontrib><creatorcontrib>Giles, B.</creatorcontrib><creatorcontrib>Le Contel, O.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorenko, E. E.</au><au>Malykhin, A. Y.</au><au>Shklyar, D. R.</au><au>Fadanelli, S.</au><au>Lavraud, B.</au><au>Panov, E. V.</au><au>Avanov, L.</au><au>Giles, B.</au><au>Le Contel, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-09</date><risdate>2020</risdate><volume>125</volume><issue>9</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Using burst mode Magnetospheric Multiscale (MMS) observations in the plasma sheet (PS), we study the dynamics of electron anisotropy and its relation to quasi‐parallel narrowband whistler bursts in 37 dipolarization fronts (DFs) propagating in the Earth's magnetotail along with fast flows at −25 RE ≤ X ≤ −17 RE. The bursts were observed at the DFs and behind them in the dipolarizing flux bundle (DFB) region with frequencies fpeak ~ (0.1–0.6) fce ( fce is electron gyrofrequency) and durations approximately a few seconds. The majority of the whistler waves were associated with perpendicular electron temperature anisotropy TPER/TPAR > 1, and the value of this anisotropy decreased by the end of the bursts suggesting electron scattering by the waves. We found that the major contribution to the growth rate of whistler waves is made by resonant electrons with energies Wres ~ 1–5 keV and pitch angles αres ~ 40–75° and ~100–135°. In the majority of cases, the largest Wres was observed at the DF and immediately behind it, while in the DFB the Wres decreased. The sources of the majority of whistler bursts were not confined near the neutral plane but could be extended into the PS where the perpendicular anisotropy of the local electron distribution provided the positive growth rate of the whistler waves. We show that the observed whistler waves play a significant role in the dynamics of electron velocity distribution in DFs, leading to energy exchange between various parts of electron population and constraining temperature anisotropy of electron distribution.
Key Points
Electron distribution function is highly variable on time scales of short narrowband quasi‐parallel whistler bursts at and behind DFs
Electrons with energies 1–5 keV and pitch angles ~40–75° and 100–135° make the major contribution to the growth rate of these waves
The source of the wave bursts is spread out in space and not confined near the neutral plane</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JA028268</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0003-0670-4642</orcidid><orcidid>https://orcid.org/0000-0001-8626-547X</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0003-3609-235X</orcidid><orcidid>https://orcid.org/0000-0003-2357-4851</orcidid><orcidid>https://orcid.org/0000-0003-2713-7966</orcidid><orcidid>https://orcid.org/0000-0002-6516-6058</orcidid><orcidid>https://orcid.org/0000-0002-9968-5083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2020-09, Vol.125 (9), p.n/a |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03002458v1 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Astrophysics Bursts dipolarizations Distribution functions Earth and Planetary Astrophysics Earth magnetosphere electron distirbutions Electron distribution Electron energy Electron velocity distribution Energy transfer Growth rate Gyrofrequency magnetotail Magnetotails Narrowband Physics Pitch (inclination) plasma Sheet Velocity distribution Waves Whistler waves |
title | Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Electron%20Distribution%20Functions%20Associated%20With%20Whistler%20Waves%20at%20Dipolarization%20Fronts%20in%20the%20Earth's%20Magnetotail:%20MMS%20Observations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Grigorenko,%20E.%20E.&rft.date=2020-09&rft.volume=125&rft.issue=9&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2020JA028268&rft_dat=%3Cproquest_hal_p%3E2450819433%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450819433&rft_id=info:pmid/&rfr_iscdi=true |