MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework

We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2021-02, Vol.27 (2), p.464-474
Hauptverfasser: Wu, Aoyu, Tong, Wai, Dwyer, Tim, Lee, Bongshin, Isenberg, Petra, Qu, Huamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 2
container_start_page 464
container_title IEEE transactions on visualization and computer graphics
container_volume 27
creator Wu, Aoyu
Tong, Wai
Dwyer, Tim
Lee, Bongshin
Isenberg, Petra
Qu, Huamin
description We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.
doi_str_mv 10.1109/TVCG.2020.3030423
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03001709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229072</ieee_id><sourcerecordid>2452499249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</originalsourceid><addsrcrecordid>eNqN0V2L1DAUBuAiivuhP0AEKXjjIh1PPto03i1lZ1cYUWRcL0vSnu5m7SRj0u6Hv97UjiN45UVpODxvkvZNkhcEFoSAfLe-rM4XFCgsGDDglD1KDonkJIMcisdxDUJktKDFQXIUwg0A4byUT5MDxkDwksjD5OGj06bHSxOW5h79-3StTO-8sVfpN9RpnI-qNz_VYJwNaed8OgfSz9fOYkhXeIteXU1e2fTsftsrY5WO4AsaG32DG7RDdMrbSS292uCd89-fJU861Qd8vnsfJ1-XZ-vqIlt9Ov9Qna6yhtNiyFALLopct0IK0aCEjnItVd5KSeMj8rwrOk24KijRZae1aHVJSE7bnEFLGnacnMz7Xqu-3nqzUf6hdsrUF6ereprFXwdEgLwl0b6Z7da7HyOGod6Y0GDfK4tuDDXlOeXxYC4jff0PvXGjt_FLoioZLVhBRVRkVo13IXjs9jcgUE8d1lOH9dRhveswZl7tdh71Btt94k9pEbydwR1q14XGoG1wzwBAQBExiSvGoy7_X1dm-F115UY7xOjLOWoQ_0YkpRIEZb8AT8nAcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483263627</pqid></control><display><type>article</type><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</creator><creatorcontrib>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</creatorcontrib><description>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3030423</identifier><identifier>PMID: 33074819</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Algorithms ; Cartesian coordinates ; Cell phones ; Computer Science ; Computer Science, Software Engineering ; Data visualization ; Electronic devices ; Encoding ; Heuristic methods ; Human-Computer Interaction ; Layout ; Learning ; Machine learning for visualizations ; Markov processes ; Mobile handsets ; Mobile visualization ; Multiple criterion ; Optimization ; Reinforcement learning ; Responsive visualization ; Science &amp; Technology ; Screens ; Sociology ; Statistics ; Technology ; Toolkits ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.464-474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000706330100034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</citedby><cites>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</cites><orcidid>0000-0002-2948-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33074819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-03001709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Aoyu</creatorcontrib><creatorcontrib>Tong, Wai</creatorcontrib><creatorcontrib>Dwyer, Tim</creatorcontrib><creatorcontrib>Lee, Bongshin</creatorcontrib><creatorcontrib>Isenberg, Petra</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE T VIS COMPUT GR</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</description><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Cell phones</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Data visualization</subject><subject>Electronic devices</subject><subject>Encoding</subject><subject>Heuristic methods</subject><subject>Human-Computer Interaction</subject><subject>Layout</subject><subject>Learning</subject><subject>Machine learning for visualizations</subject><subject>Markov processes</subject><subject>Mobile handsets</subject><subject>Mobile visualization</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Responsive visualization</subject><subject>Science &amp; Technology</subject><subject>Screens</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Technology</subject><subject>Toolkits</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqN0V2L1DAUBuAiivuhP0AEKXjjIh1PPto03i1lZ1cYUWRcL0vSnu5m7SRj0u6Hv97UjiN45UVpODxvkvZNkhcEFoSAfLe-rM4XFCgsGDDglD1KDonkJIMcisdxDUJktKDFQXIUwg0A4byUT5MDxkDwksjD5OGj06bHSxOW5h79-3StTO-8sVfpN9RpnI-qNz_VYJwNaed8OgfSz9fOYkhXeIteXU1e2fTsftsrY5WO4AsaG32DG7RDdMrbSS292uCd89-fJU861Qd8vnsfJ1-XZ-vqIlt9Ov9Qna6yhtNiyFALLopct0IK0aCEjnItVd5KSeMj8rwrOk24KijRZae1aHVJSE7bnEFLGnacnMz7Xqu-3nqzUf6hdsrUF6ereprFXwdEgLwl0b6Z7da7HyOGod6Y0GDfK4tuDDXlOeXxYC4jff0PvXGjt_FLoioZLVhBRVRkVo13IXjs9jcgUE8d1lOH9dRhveswZl7tdh71Btt94k9pEbydwR1q14XGoG1wzwBAQBExiSvGoy7_X1dm-F115UY7xOjLOWoQ_0YkpRIEZb8AT8nAcg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wu, Aoyu</creator><creator>Tong, Wai</creator><creator>Dwyer, Tim</creator><creator>Lee, Bongshin</creator><creator>Isenberg, Petra</creator><creator>Qu, Huamin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2948-6417</orcidid></search><sort><creationdate>20210201</creationdate><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><author>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Cell phones</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Data visualization</topic><topic>Electronic devices</topic><topic>Encoding</topic><topic>Heuristic methods</topic><topic>Human-Computer Interaction</topic><topic>Layout</topic><topic>Learning</topic><topic>Machine learning for visualizations</topic><topic>Markov processes</topic><topic>Mobile handsets</topic><topic>Mobile visualization</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Responsive visualization</topic><topic>Science &amp; Technology</topic><topic>Screens</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Technology</topic><topic>Toolkits</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Aoyu</creatorcontrib><creatorcontrib>Tong, Wai</creatorcontrib><creatorcontrib>Dwyer, Tim</creatorcontrib><creatorcontrib>Lee, Bongshin</creatorcontrib><creatorcontrib>Isenberg, Petra</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Aoyu</au><au>Tong, Wai</au><au>Dwyer, Tim</au><au>Lee, Bongshin</au><au>Isenberg, Petra</au><au>Qu, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><stitle>IEEE T VIS COMPUT GR</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>464</spage><epage>474</epage><pages>464-474</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><pmid>33074819</pmid><doi>10.1109/TVCG.2020.3030423</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2948-6417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.464-474
issn 1077-2626
1941-0506
language eng
recordid cdi_hal_primary_oai_HAL_hal_03001709v1
source IEEE Electronic Library (IEL)
subjects Algorithms
Cartesian coordinates
Cell phones
Computer Science
Computer Science, Software Engineering
Data visualization
Electronic devices
Encoding
Heuristic methods
Human-Computer Interaction
Layout
Learning
Machine learning for visualizations
Markov processes
Mobile handsets
Mobile visualization
Multiple criterion
Optimization
Reinforcement learning
Responsive visualization
Science & Technology
Screens
Sociology
Statistics
Technology
Toolkits
Visualization
title MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MobileVisFixer:%20Tailoring%20Web%20Visualizations%20for%20Mobile%20Phones%20Leveraging%20an%20Explainable%20Reinforcement%20Learning%20Framework&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wu,%20Aoyu&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=464&rft.epage=474&rft.pages=464-474&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3030423&rft_dat=%3Cproquest_RIE%3E2452499249%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483263627&rft_id=info:pmid/33074819&rft_ieee_id=9229072&rfr_iscdi=true