MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework
We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2021-02, Vol.27 (2), p.464-474 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 2 |
container_start_page | 464 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Wu, Aoyu Tong, Wai Dwyer, Tim Lee, Bongshin Isenberg, Petra Qu, Huamin |
description | We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method. |
doi_str_mv | 10.1109/TVCG.2020.3030423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03001709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229072</ieee_id><sourcerecordid>2452499249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</originalsourceid><addsrcrecordid>eNqN0V2L1DAUBuAiivuhP0AEKXjjIh1PPto03i1lZ1cYUWRcL0vSnu5m7SRj0u6Hv97UjiN45UVpODxvkvZNkhcEFoSAfLe-rM4XFCgsGDDglD1KDonkJIMcisdxDUJktKDFQXIUwg0A4byUT5MDxkDwksjD5OGj06bHSxOW5h79-3StTO-8sVfpN9RpnI-qNz_VYJwNaed8OgfSz9fOYkhXeIteXU1e2fTsftsrY5WO4AsaG32DG7RDdMrbSS292uCd89-fJU861Qd8vnsfJ1-XZ-vqIlt9Ov9Qna6yhtNiyFALLopct0IK0aCEjnItVd5KSeMj8rwrOk24KijRZae1aHVJSE7bnEFLGnacnMz7Xqu-3nqzUf6hdsrUF6ereprFXwdEgLwl0b6Z7da7HyOGod6Y0GDfK4tuDDXlOeXxYC4jff0PvXGjt_FLoioZLVhBRVRkVo13IXjs9jcgUE8d1lOH9dRhveswZl7tdh71Btt94k9pEbydwR1q14XGoG1wzwBAQBExiSvGoy7_X1dm-F115UY7xOjLOWoQ_0YkpRIEZb8AT8nAcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483263627</pqid></control><display><type>article</type><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</creator><creatorcontrib>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</creatorcontrib><description>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3030423</identifier><identifier>PMID: 33074819</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>LOS ALAMITOS: IEEE</publisher><subject>Algorithms ; Cartesian coordinates ; Cell phones ; Computer Science ; Computer Science, Software Engineering ; Data visualization ; Electronic devices ; Encoding ; Heuristic methods ; Human-Computer Interaction ; Layout ; Learning ; Machine learning for visualizations ; Markov processes ; Mobile handsets ; Mobile visualization ; Multiple criterion ; Optimization ; Reinforcement learning ; Responsive visualization ; Science & Technology ; Screens ; Sociology ; Statistics ; Technology ; Toolkits ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.464-474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000706330100034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</citedby><cites>FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</cites><orcidid>0000-0002-2948-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33074819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-03001709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Aoyu</creatorcontrib><creatorcontrib>Tong, Wai</creatorcontrib><creatorcontrib>Dwyer, Tim</creatorcontrib><creatorcontrib>Lee, Bongshin</creatorcontrib><creatorcontrib>Isenberg, Petra</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE T VIS COMPUT GR</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</description><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>Cell phones</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Data visualization</subject><subject>Electronic devices</subject><subject>Encoding</subject><subject>Heuristic methods</subject><subject>Human-Computer Interaction</subject><subject>Layout</subject><subject>Learning</subject><subject>Machine learning for visualizations</subject><subject>Markov processes</subject><subject>Mobile handsets</subject><subject>Mobile visualization</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Responsive visualization</subject><subject>Science & Technology</subject><subject>Screens</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Technology</subject><subject>Toolkits</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqN0V2L1DAUBuAiivuhP0AEKXjjIh1PPto03i1lZ1cYUWRcL0vSnu5m7SRj0u6Hv97UjiN45UVpODxvkvZNkhcEFoSAfLe-rM4XFCgsGDDglD1KDonkJIMcisdxDUJktKDFQXIUwg0A4byUT5MDxkDwksjD5OGj06bHSxOW5h79-3StTO-8sVfpN9RpnI-qNz_VYJwNaed8OgfSz9fOYkhXeIteXU1e2fTsftsrY5WO4AsaG32DG7RDdMrbSS292uCd89-fJU861Qd8vnsfJ1-XZ-vqIlt9Ov9Qna6yhtNiyFALLopct0IK0aCEjnItVd5KSeMj8rwrOk24KijRZae1aHVJSE7bnEFLGnacnMz7Xqu-3nqzUf6hdsrUF6ereprFXwdEgLwl0b6Z7da7HyOGod6Y0GDfK4tuDDXlOeXxYC4jff0PvXGjt_FLoioZLVhBRVRkVo13IXjs9jcgUE8d1lOH9dRhveswZl7tdh71Btt94k9pEbydwR1q14XGoG1wzwBAQBExiSvGoy7_X1dm-F115UY7xOjLOWoQ_0YkpRIEZb8AT8nAcg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wu, Aoyu</creator><creator>Tong, Wai</creator><creator>Dwyer, Tim</creator><creator>Lee, Bongshin</creator><creator>Isenberg, Petra</creator><creator>Qu, Huamin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2948-6417</orcidid></search><sort><creationdate>20210201</creationdate><title>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</title><author>Wu, Aoyu ; Tong, Wai ; Dwyer, Tim ; Lee, Bongshin ; Isenberg, Petra ; Qu, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-eb74765bd7977ce90f24b9a5d992d99755f6fb14a621b8fbb7db81152d530d1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>Cell phones</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Data visualization</topic><topic>Electronic devices</topic><topic>Encoding</topic><topic>Heuristic methods</topic><topic>Human-Computer Interaction</topic><topic>Layout</topic><topic>Learning</topic><topic>Machine learning for visualizations</topic><topic>Markov processes</topic><topic>Mobile handsets</topic><topic>Mobile visualization</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Responsive visualization</topic><topic>Science & Technology</topic><topic>Screens</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Technology</topic><topic>Toolkits</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Aoyu</creatorcontrib><creatorcontrib>Tong, Wai</creatorcontrib><creatorcontrib>Dwyer, Tim</creatorcontrib><creatorcontrib>Lee, Bongshin</creatorcontrib><creatorcontrib>Isenberg, Petra</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Aoyu</au><au>Tong, Wai</au><au>Dwyer, Tim</au><au>Lee, Bongshin</au><au>Isenberg, Petra</au><au>Qu, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><stitle>IEEE T VIS COMPUT GR</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>464</spage><epage>474</epage><pages>464-474</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and can lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.</abstract><cop>LOS ALAMITOS</cop><pub>IEEE</pub><pmid>33074819</pmid><doi>10.1109/TVCG.2020.3030423</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2948-6417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.464-474 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03001709v1 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cartesian coordinates Cell phones Computer Science Computer Science, Software Engineering Data visualization Electronic devices Encoding Heuristic methods Human-Computer Interaction Layout Learning Machine learning for visualizations Markov processes Mobile handsets Mobile visualization Multiple criterion Optimization Reinforcement learning Responsive visualization Science & Technology Screens Sociology Statistics Technology Toolkits Visualization |
title | MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MobileVisFixer:%20Tailoring%20Web%20Visualizations%20for%20Mobile%20Phones%20Leveraging%20an%20Explainable%20Reinforcement%20Learning%20Framework&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wu,%20Aoyu&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=464&rft.epage=474&rft.pages=464-474&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3030423&rft_dat=%3Cproquest_RIE%3E2452499249%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483263627&rft_id=info:pmid/33074819&rft_ieee_id=9229072&rfr_iscdi=true |