Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice

Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2017-08, Vol.222 (6), p.2855-2876
Hauptverfasser: Mastrorilli, Valentina, Scopa, Chiara, Saraulli, Daniele, Costanzi, Marco, Scardigli, Raffaella, Rouault, Jean-Pierre, Farioli-Vecchioli, Stefano, Tirone, Felice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2876
container_issue 6
container_start_page 2855
container_title Brain Structure and Function
container_volume 222
creator Mastrorilli, Valentina
Scopa, Chiara
Saraulli, Daniele
Costanzi, Marco
Scardigli, Raffaella
Rouault, Jean-Pierre
Farioli-Vecchioli, Stefano
Tirone, Felice
description Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.
doi_str_mv 10.1007/s00429-017-1376-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02998442v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873396097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EoqXwAbggS1zgEPC_2M6xrYAirQQHOFteZ7LrNrGLHa8oEt8dh5QVQuJk6_k3b2b8EHpOyRtKiHqbCRGsawhVDeVKNuIBOqVa8oZJSR8e7y0_QU9yviak7TTtHqMTpplQhLFT9PPz_i57Z0cM3yE5nwEnyK5Axj0M4GZ_ABygpErkGSbsYBwztqH_rcYdBMg-Yx_wvAds-zLOOJftAcKcvCujTfhHDIDjgC_mHcU3IbqbWGY8eQdP0aPBjhme3Z9n6Ov7d18ur5rNpw8fL883jRNEzk3rOOMC9NATAEV6wQa3FQPQRbC2laRVWgm6pT0ljHYMOOhWa0nkIG1H-Rl6vfru7Whuk59sujPRenN1vjGLRljXaSHYYWFfrextit_qP8xm8nnZ2gaIJRuqFeedJJ2q6Mt_0OtYUqibmDpEy1V15ZWiK-VSzDnBcJyAErPkaNYcTc3RLDkaUWte3DuX7QT9seJPcBVgK5DrU9hB-qv1f11_AeAOqFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925372993</pqid></control><display><type>article</type><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</creator><creatorcontrib>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</creatorcontrib><description>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-017-1376-4</identifier><identifier>PMID: 28247022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Cell self-renewal ; Cellular Senescence ; Dentate gyrus ; Genotype ; Lateral Ventricles - metabolism ; Lateral Ventricles - pathology ; Lateral Ventricles - physiopathology ; Life Sciences ; Mice, Inbred C57BL ; Mice, Knockout ; Neoplasm Proteins - deficiency ; Neoplasm Proteins - genetics ; Neural stem cells ; Neural Stem Cells - metabolism ; Neural Stem Cells - pathology ; Neuroblasts ; Neurogenesis ; Neurology ; Neuronal-glial interactions ; Neurosciences ; Neurospheres ; Olfactory bulb ; Original Article ; Phenotype ; Physical Conditioning, Animal ; Physical training ; Primary Cell Culture ; Rodents ; Running ; Spheroids, Cellular ; Stem cell transplantation ; Stem cells ; Subventricular zone ; Time Factors ; Tissue Culture Techniques</subject><ispartof>Brain Structure and Function, 2017-08, Vol.222 (6), p.2855-2876</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Brain Structure and Function is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</citedby><cites>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</cites><orcidid>0000-0002-0980-4377 ; 0000-0002-9179-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-017-1376-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-017-1376-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02998442$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mastrorilli, Valentina</creatorcontrib><creatorcontrib>Scopa, Chiara</creatorcontrib><creatorcontrib>Saraulli, Daniele</creatorcontrib><creatorcontrib>Costanzi, Marco</creatorcontrib><creatorcontrib>Scardigli, Raffaella</creatorcontrib><creatorcontrib>Rouault, Jean-Pierre</creatorcontrib><creatorcontrib>Farioli-Vecchioli, Stefano</creatorcontrib><creatorcontrib>Tirone, Felice</creatorcontrib><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Cycle</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cellular Senescence</subject><subject>Dentate gyrus</subject><subject>Genotype</subject><subject>Lateral Ventricles - metabolism</subject><subject>Lateral Ventricles - pathology</subject><subject>Lateral Ventricles - physiopathology</subject><subject>Life Sciences</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neoplasm Proteins - deficiency</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - pathology</subject><subject>Neuroblasts</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neuronal-glial interactions</subject><subject>Neurosciences</subject><subject>Neurospheres</subject><subject>Olfactory bulb</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Physical Conditioning, Animal</subject><subject>Physical training</subject><subject>Primary Cell Culture</subject><subject>Rodents</subject><subject>Running</subject><subject>Spheroids, Cellular</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Subventricular zone</subject><subject>Time Factors</subject><subject>Tissue Culture Techniques</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9v1DAQxS0EoqXwAbggS1zgEPC_2M6xrYAirQQHOFteZ7LrNrGLHa8oEt8dh5QVQuJk6_k3b2b8EHpOyRtKiHqbCRGsawhVDeVKNuIBOqVa8oZJSR8e7y0_QU9yviak7TTtHqMTpplQhLFT9PPz_i57Z0cM3yE5nwEnyK5Axj0M4GZ_ABygpErkGSbsYBwztqH_rcYdBMg-Yx_wvAds-zLOOJftAcKcvCujTfhHDIDjgC_mHcU3IbqbWGY8eQdP0aPBjhme3Z9n6Ov7d18ur5rNpw8fL883jRNEzk3rOOMC9NATAEV6wQa3FQPQRbC2laRVWgm6pT0ljHYMOOhWa0nkIG1H-Rl6vfru7Whuk59sujPRenN1vjGLRljXaSHYYWFfrextit_qP8xm8nnZ2gaIJRuqFeedJJ2q6Mt_0OtYUqibmDpEy1V15ZWiK-VSzDnBcJyAErPkaNYcTc3RLDkaUWte3DuX7QT9seJPcBVgK5DrU9hB-qv1f11_AeAOqFg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mastrorilli, Valentina</creator><creator>Scopa, Chiara</creator><creator>Saraulli, Daniele</creator><creator>Costanzi, Marco</creator><creator>Scardigli, Raffaella</creator><creator>Rouault, Jean-Pierre</creator><creator>Farioli-Vecchioli, Stefano</creator><creator>Tirone, Felice</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0980-4377</orcidid><orcidid>https://orcid.org/0000-0002-9179-5958</orcidid></search><sort><creationdate>20170801</creationdate><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><author>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Cycle</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cellular Senescence</topic><topic>Dentate gyrus</topic><topic>Genotype</topic><topic>Lateral Ventricles - metabolism</topic><topic>Lateral Ventricles - pathology</topic><topic>Lateral Ventricles - physiopathology</topic><topic>Life Sciences</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neoplasm Proteins - deficiency</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - pathology</topic><topic>Neuroblasts</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neuronal-glial interactions</topic><topic>Neurosciences</topic><topic>Neurospheres</topic><topic>Olfactory bulb</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Physical Conditioning, Animal</topic><topic>Physical training</topic><topic>Primary Cell Culture</topic><topic>Rodents</topic><topic>Running</topic><topic>Spheroids, Cellular</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Subventricular zone</topic><topic>Time Factors</topic><topic>Tissue Culture Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastrorilli, Valentina</creatorcontrib><creatorcontrib>Scopa, Chiara</creatorcontrib><creatorcontrib>Saraulli, Daniele</creatorcontrib><creatorcontrib>Costanzi, Marco</creatorcontrib><creatorcontrib>Scardigli, Raffaella</creatorcontrib><creatorcontrib>Rouault, Jean-Pierre</creatorcontrib><creatorcontrib>Farioli-Vecchioli, Stefano</creatorcontrib><creatorcontrib>Tirone, Felice</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastrorilli, Valentina</au><au>Scopa, Chiara</au><au>Saraulli, Daniele</au><au>Costanzi, Marco</au><au>Scardigli, Raffaella</au><au>Rouault, Jean-Pierre</au><au>Farioli-Vecchioli, Stefano</au><au>Tirone, Felice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>222</volume><issue>6</issue><spage>2855</spage><epage>2876</epage><pages>2855-2876</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28247022</pmid><doi>10.1007/s00429-017-1376-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0980-4377</orcidid><orcidid>https://orcid.org/0000-0002-9179-5958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2017-08, Vol.222 (6), p.2855-2876
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_hal_primary_oai_HAL_hal_02998442v1
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Apoptosis
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Cycle
Cell Movement
Cell Proliferation
Cell self-renewal
Cellular Senescence
Dentate gyrus
Genotype
Lateral Ventricles - metabolism
Lateral Ventricles - pathology
Lateral Ventricles - physiopathology
Life Sciences
Mice, Inbred C57BL
Mice, Knockout
Neoplasm Proteins - deficiency
Neoplasm Proteins - genetics
Neural stem cells
Neural Stem Cells - metabolism
Neural Stem Cells - pathology
Neuroblasts
Neurogenesis
Neurology
Neuronal-glial interactions
Neurosciences
Neurospheres
Olfactory bulb
Original Article
Phenotype
Physical Conditioning, Animal
Physical training
Primary Cell Culture
Rodents
Running
Spheroids, Cellular
Stem cell transplantation
Stem cells
Subventricular zone
Time Factors
Tissue Culture Techniques
title Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20exercise%20rescues%20defective%20neural%20stem%20cells%20and%20neurogenesis%20in%20the%20adult%20subventricular%20zone%20of%20Btg1%20knockout%20mice&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Mastrorilli,%20Valentina&rft.date=2017-08-01&rft.volume=222&rft.issue=6&rft.spage=2855&rft.epage=2876&rft.pages=2855-2876&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-017-1376-4&rft_dat=%3Cproquest_hal_p%3E1873396097%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925372993&rft_id=info:pmid/28247022&rfr_iscdi=true