Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice
Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2017-08, Vol.222 (6), p.2855-2876 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2876 |
---|---|
container_issue | 6 |
container_start_page | 2855 |
container_title | Brain Structure and Function |
container_volume | 222 |
creator | Mastrorilli, Valentina Scopa, Chiara Saraulli, Daniele Costanzi, Marco Scardigli, Raffaella Rouault, Jean-Pierre Farioli-Vecchioli, Stefano Tirone, Felice |
description | Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise. |
doi_str_mv | 10.1007/s00429-017-1376-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02998442v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1873396097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EoqXwAbggS1zgEPC_2M6xrYAirQQHOFteZ7LrNrGLHa8oEt8dh5QVQuJk6_k3b2b8EHpOyRtKiHqbCRGsawhVDeVKNuIBOqVa8oZJSR8e7y0_QU9yviak7TTtHqMTpplQhLFT9PPz_i57Z0cM3yE5nwEnyK5Axj0M4GZ_ABygpErkGSbsYBwztqH_rcYdBMg-Yx_wvAds-zLOOJftAcKcvCujTfhHDIDjgC_mHcU3IbqbWGY8eQdP0aPBjhme3Z9n6Ov7d18ur5rNpw8fL883jRNEzk3rOOMC9NATAEV6wQa3FQPQRbC2laRVWgm6pT0ljHYMOOhWa0nkIG1H-Rl6vfru7Whuk59sujPRenN1vjGLRljXaSHYYWFfrextit_qP8xm8nnZ2gaIJRuqFeedJJ2q6Mt_0OtYUqibmDpEy1V15ZWiK-VSzDnBcJyAErPkaNYcTc3RLDkaUWte3DuX7QT9seJPcBVgK5DrU9hB-qv1f11_AeAOqFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925372993</pqid></control><display><type>article</type><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</creator><creatorcontrib>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</creatorcontrib><description>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-017-1376-4</identifier><identifier>PMID: 28247022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Cell self-renewal ; Cellular Senescence ; Dentate gyrus ; Genotype ; Lateral Ventricles - metabolism ; Lateral Ventricles - pathology ; Lateral Ventricles - physiopathology ; Life Sciences ; Mice, Inbred C57BL ; Mice, Knockout ; Neoplasm Proteins - deficiency ; Neoplasm Proteins - genetics ; Neural stem cells ; Neural Stem Cells - metabolism ; Neural Stem Cells - pathology ; Neuroblasts ; Neurogenesis ; Neurology ; Neuronal-glial interactions ; Neurosciences ; Neurospheres ; Olfactory bulb ; Original Article ; Phenotype ; Physical Conditioning, Animal ; Physical training ; Primary Cell Culture ; Rodents ; Running ; Spheroids, Cellular ; Stem cell transplantation ; Stem cells ; Subventricular zone ; Time Factors ; Tissue Culture Techniques</subject><ispartof>Brain Structure and Function, 2017-08, Vol.222 (6), p.2855-2876</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Brain Structure and Function is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</citedby><cites>FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</cites><orcidid>0000-0002-0980-4377 ; 0000-0002-9179-5958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-017-1376-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-017-1376-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02998442$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mastrorilli, Valentina</creatorcontrib><creatorcontrib>Scopa, Chiara</creatorcontrib><creatorcontrib>Saraulli, Daniele</creatorcontrib><creatorcontrib>Costanzi, Marco</creatorcontrib><creatorcontrib>Scardigli, Raffaella</creatorcontrib><creatorcontrib>Rouault, Jean-Pierre</creatorcontrib><creatorcontrib>Farioli-Vecchioli, Stefano</creatorcontrib><creatorcontrib>Tirone, Felice</creatorcontrib><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Cycle</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cellular Senescence</subject><subject>Dentate gyrus</subject><subject>Genotype</subject><subject>Lateral Ventricles - metabolism</subject><subject>Lateral Ventricles - pathology</subject><subject>Lateral Ventricles - physiopathology</subject><subject>Life Sciences</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neoplasm Proteins - deficiency</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - pathology</subject><subject>Neuroblasts</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neuronal-glial interactions</subject><subject>Neurosciences</subject><subject>Neurospheres</subject><subject>Olfactory bulb</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Physical Conditioning, Animal</subject><subject>Physical training</subject><subject>Primary Cell Culture</subject><subject>Rodents</subject><subject>Running</subject><subject>Spheroids, Cellular</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Subventricular zone</subject><subject>Time Factors</subject><subject>Tissue Culture Techniques</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9v1DAQxS0EoqXwAbggS1zgEPC_2M6xrYAirQQHOFteZ7LrNrGLHa8oEt8dh5QVQuJk6_k3b2b8EHpOyRtKiHqbCRGsawhVDeVKNuIBOqVa8oZJSR8e7y0_QU9yviak7TTtHqMTpplQhLFT9PPz_i57Z0cM3yE5nwEnyK5Axj0M4GZ_ABygpErkGSbsYBwztqH_rcYdBMg-Yx_wvAds-zLOOJftAcKcvCujTfhHDIDjgC_mHcU3IbqbWGY8eQdP0aPBjhme3Z9n6Ov7d18ur5rNpw8fL883jRNEzk3rOOMC9NATAEV6wQa3FQPQRbC2laRVWgm6pT0ljHYMOOhWa0nkIG1H-Rl6vfru7Whuk59sujPRenN1vjGLRljXaSHYYWFfrextit_qP8xm8nnZ2gaIJRuqFeedJJ2q6Mt_0OtYUqibmDpEy1V15ZWiK-VSzDnBcJyAErPkaNYcTc3RLDkaUWte3DuX7QT9seJPcBVgK5DrU9hB-qv1f11_AeAOqFg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mastrorilli, Valentina</creator><creator>Scopa, Chiara</creator><creator>Saraulli, Daniele</creator><creator>Costanzi, Marco</creator><creator>Scardigli, Raffaella</creator><creator>Rouault, Jean-Pierre</creator><creator>Farioli-Vecchioli, Stefano</creator><creator>Tirone, Felice</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0980-4377</orcidid><orcidid>https://orcid.org/0000-0002-9179-5958</orcidid></search><sort><creationdate>20170801</creationdate><title>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</title><author>Mastrorilli, Valentina ; Scopa, Chiara ; Saraulli, Daniele ; Costanzi, Marco ; Scardigli, Raffaella ; Rouault, Jean-Pierre ; Farioli-Vecchioli, Stefano ; Tirone, Felice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5c3234e8fd0ee70d42fcb4fe1fd0eaa560578741b1d102192e3e8588606f6a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Cycle</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cellular Senescence</topic><topic>Dentate gyrus</topic><topic>Genotype</topic><topic>Lateral Ventricles - metabolism</topic><topic>Lateral Ventricles - pathology</topic><topic>Lateral Ventricles - physiopathology</topic><topic>Life Sciences</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neoplasm Proteins - deficiency</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - pathology</topic><topic>Neuroblasts</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neuronal-glial interactions</topic><topic>Neurosciences</topic><topic>Neurospheres</topic><topic>Olfactory bulb</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Physical Conditioning, Animal</topic><topic>Physical training</topic><topic>Primary Cell Culture</topic><topic>Rodents</topic><topic>Running</topic><topic>Spheroids, Cellular</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Subventricular zone</topic><topic>Time Factors</topic><topic>Tissue Culture Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastrorilli, Valentina</creatorcontrib><creatorcontrib>Scopa, Chiara</creatorcontrib><creatorcontrib>Saraulli, Daniele</creatorcontrib><creatorcontrib>Costanzi, Marco</creatorcontrib><creatorcontrib>Scardigli, Raffaella</creatorcontrib><creatorcontrib>Rouault, Jean-Pierre</creatorcontrib><creatorcontrib>Farioli-Vecchioli, Stefano</creatorcontrib><creatorcontrib>Tirone, Felice</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastrorilli, Valentina</au><au>Scopa, Chiara</au><au>Saraulli, Daniele</au><au>Costanzi, Marco</au><au>Scardigli, Raffaella</au><au>Rouault, Jean-Pierre</au><au>Farioli-Vecchioli, Stefano</au><au>Tirone, Felice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>222</volume><issue>6</issue><spage>2855</spage><epage>2876</epage><pages>2855-2876</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28247022</pmid><doi>10.1007/s00429-017-1376-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0980-4377</orcidid><orcidid>https://orcid.org/0000-0002-9179-5958</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2017-08, Vol.222 (6), p.2855-2876 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02998442v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Apoptosis Biomedical and Life Sciences Biomedicine Cell Biology Cell Cycle Cell Movement Cell Proliferation Cell self-renewal Cellular Senescence Dentate gyrus Genotype Lateral Ventricles - metabolism Lateral Ventricles - pathology Lateral Ventricles - physiopathology Life Sciences Mice, Inbred C57BL Mice, Knockout Neoplasm Proteins - deficiency Neoplasm Proteins - genetics Neural stem cells Neural Stem Cells - metabolism Neural Stem Cells - pathology Neuroblasts Neurogenesis Neurology Neuronal-glial interactions Neurosciences Neurospheres Olfactory bulb Original Article Phenotype Physical Conditioning, Animal Physical training Primary Cell Culture Rodents Running Spheroids, Cellular Stem cell transplantation Stem cells Subventricular zone Time Factors Tissue Culture Techniques |
title | Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20exercise%20rescues%20defective%20neural%20stem%20cells%20and%20neurogenesis%20in%20the%20adult%20subventricular%20zone%20of%20Btg1%20knockout%20mice&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Mastrorilli,%20Valentina&rft.date=2017-08-01&rft.volume=222&rft.issue=6&rft.spage=2855&rft.epage=2876&rft.pages=2855-2876&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-017-1376-4&rft_dat=%3Cproquest_hal_p%3E1873396097%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925372993&rft_id=info:pmid/28247022&rfr_iscdi=true |