Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree

Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-12, Vol.14 (12), p.16525-16534
Hauptverfasser: Merindol, Rémi, Diabang, Seydina, Mujica, Randy, Le Houerou, Vincent, Roland, Thierry, Gauthier, Christian, Decher, Gero, Felix, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16534
container_issue 12
container_start_page 16525
container_title ACS nano
container_volume 14
creator Merindol, Rémi
Diabang, Seydina
Mujica, Randy
Le Houerou, Vincent
Roland, Thierry
Gauthier, Christian
Decher, Gero
Felix, Olivier
description Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly­(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.
doi_str_mv 10.1021/acsnano.0c01372
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02997614v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434472402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-cb20189c10cba9eba08384e280d61b007fa3c440e9766b8fc7e718243402a4863</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhosoOKdnrzkq0u1LmrXpsQznxOEOTvAW0phuGWkzk1bYvzelYzcvScj3vA98bxTdY5hgIHgqpG9EYycgAScZuYhGOE_SGFj6dXl-z_B1dOP9HmCWsSwdRW-F96ouzRHZChWN9rZ19qAleg8uqYzpjPUKLbSpPfoIs2arHGp3ogmHQmunt7oRBm2cUrfRVSWMV3enexx9Lp4382W8Wr-8zotVLOgMt7EsCWCWSwyyFLkqBbCEUUUYfKe4BMgqkUhKQeVZmpaskpnKMCM0oUAEZWkyjh4H704YfnC6Fu7IrdB8Wax4_wckD1lMf3FgHwb24OxPp3zLa-37vUSjbOd5r6UZCeqATgdUOuu9U9XZjYH3FfNTxfxUcUg8DYkw4HvbudCE_5f-A8Dkfaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434472402</pqid></control><display><type>article</type><title>Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree</title><source>ACS Publications</source><creator>Merindol, Rémi ; Diabang, Seydina ; Mujica, Randy ; Le Houerou, Vincent ; Roland, Thierry ; Gauthier, Christian ; Decher, Gero ; Felix, Olivier</creator><creatorcontrib>Merindol, Rémi ; Diabang, Seydina ; Mujica, Randy ; Le Houerou, Vincent ; Roland, Thierry ; Gauthier, Christian ; Decher, Gero ; Felix, Olivier</creatorcontrib><description>Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly­(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c01372</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>ACS nano, 2020-12, Vol.14 (12), p.16525-16534</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-cb20189c10cba9eba08384e280d61b007fa3c440e9766b8fc7e718243402a4863</citedby><cites>FETCH-LOGICAL-a451t-cb20189c10cba9eba08384e280d61b007fa3c440e9766b8fc7e718243402a4863</cites><orcidid>0000-0001-7189-242X ; 0000-0001-9749-7970 ; 0000-0002-7976-8818 ; 0000-0003-4193-7097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c01372$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c01372$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02997614$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Merindol, Rémi</creatorcontrib><creatorcontrib>Diabang, Seydina</creatorcontrib><creatorcontrib>Mujica, Randy</creatorcontrib><creatorcontrib>Le Houerou, Vincent</creatorcontrib><creatorcontrib>Roland, Thierry</creatorcontrib><creatorcontrib>Gauthier, Christian</creatorcontrib><creatorcontrib>Decher, Gero</creatorcontrib><creatorcontrib>Felix, Olivier</creatorcontrib><title>Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly­(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhosoOKdnrzkq0u1LmrXpsQznxOEOTvAW0phuGWkzk1bYvzelYzcvScj3vA98bxTdY5hgIHgqpG9EYycgAScZuYhGOE_SGFj6dXl-z_B1dOP9HmCWsSwdRW-F96ouzRHZChWN9rZ19qAleg8uqYzpjPUKLbSpPfoIs2arHGp3ogmHQmunt7oRBm2cUrfRVSWMV3enexx9Lp4382W8Wr-8zotVLOgMt7EsCWCWSwyyFLkqBbCEUUUYfKe4BMgqkUhKQeVZmpaskpnKMCM0oUAEZWkyjh4H704YfnC6Fu7IrdB8Wax4_wckD1lMf3FgHwb24OxPp3zLa-37vUSjbOd5r6UZCeqATgdUOuu9U9XZjYH3FfNTxfxUcUg8DYkw4HvbudCE_5f-A8Dkfaw</recordid><startdate>20201222</startdate><enddate>20201222</enddate><creator>Merindol, Rémi</creator><creator>Diabang, Seydina</creator><creator>Mujica, Randy</creator><creator>Le Houerou, Vincent</creator><creator>Roland, Thierry</creator><creator>Gauthier, Christian</creator><creator>Decher, Gero</creator><creator>Felix, Olivier</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7189-242X</orcidid><orcidid>https://orcid.org/0000-0001-9749-7970</orcidid><orcidid>https://orcid.org/0000-0002-7976-8818</orcidid><orcidid>https://orcid.org/0000-0003-4193-7097</orcidid></search><sort><creationdate>20201222</creationdate><title>Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree</title><author>Merindol, Rémi ; Diabang, Seydina ; Mujica, Randy ; Le Houerou, Vincent ; Roland, Thierry ; Gauthier, Christian ; Decher, Gero ; Felix, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-cb20189c10cba9eba08384e280d61b007fa3c440e9766b8fc7e718243402a4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merindol, Rémi</creatorcontrib><creatorcontrib>Diabang, Seydina</creatorcontrib><creatorcontrib>Mujica, Randy</creatorcontrib><creatorcontrib>Le Houerou, Vincent</creatorcontrib><creatorcontrib>Roland, Thierry</creatorcontrib><creatorcontrib>Gauthier, Christian</creatorcontrib><creatorcontrib>Decher, Gero</creatorcontrib><creatorcontrib>Felix, Olivier</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merindol, Rémi</au><au>Diabang, Seydina</au><au>Mujica, Randy</au><au>Le Houerou, Vincent</au><au>Roland, Thierry</au><au>Gauthier, Christian</au><au>Decher, Gero</au><au>Felix, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-12-22</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>16525</spage><epage>16534</epage><pages>16525-16534</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly­(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c01372</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7189-242X</orcidid><orcidid>https://orcid.org/0000-0001-9749-7970</orcidid><orcidid>https://orcid.org/0000-0002-7976-8818</orcidid><orcidid>https://orcid.org/0000-0003-4193-7097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-12, Vol.14 (12), p.16525-16534
issn 1936-0851
1936-086X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02997614v1
source ACS Publications
subjects Chemical Sciences
Material chemistry
title Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20of%20Anisotropic%20Nanocellulose%20Films%20Stronger%20than%20the%20Original%20Tree&rft.jtitle=ACS%20nano&rft.au=Merindol,%20Re%CC%81mi&rft.date=2020-12-22&rft.volume=14&rft.issue=12&rft.spage=16525&rft.epage=16534&rft.pages=16525-16534&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c01372&rft_dat=%3Cproquest_hal_p%3E2434472402%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434472402&rft_id=info:pmid/&rfr_iscdi=true