Computing sets from all infinite subsets

A set is introreducible if it can be computed by every infinite subset of itself. Such a set can be thought of as coding information very robustly. We investigate introreducible sets and related notions. Our two main results are that the collection of introreducible sets is Π11\boldsymbol {\Pi }^1_1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-08, Vol.374 (11), p.8131-8160
Hauptverfasser: Greenberg, Noam, Harrison-Trainor, Matthew, Patey, Ludovic, Turetsky, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8160
container_issue 11
container_start_page 8131
container_title Transactions of the American Mathematical Society
container_volume 374
creator Greenberg, Noam
Harrison-Trainor, Matthew
Patey, Ludovic
Turetsky, Dan
description A set is introreducible if it can be computed by every infinite subset of itself. Such a set can be thought of as coding information very robustly. We investigate introreducible sets and related notions. Our two main results are that the collection of introreducible sets is Π11\boldsymbol {\Pi }^1_1-complete, so that there is no simple characterization of the introreducible sets; and that every introenumerable set has an introreducible subset.
doi_str_mv 10.1090/tran/8468
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02992972v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02992972v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-d0361487583e7ea1d7e7b71ae0458fd40c006f6b920783457c8ba72855ad4e303</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A8yMMAQenb8cR6riFKkSCwwW05ig1E-KjtF4t_TqAg2ptPdPe87PIRcU7inoGE1RTuskEs8IQsKiLlEAadkAQAs15qrc3KR0sdhBY5yQW7Lsd_tpzC8ZclNKfNx7DPbdVkYfBjC5LK0r-fPJTnztkvu6mcuyevm4aXc5tXz41O5rnJbMDXlLRSSclQCC6ecpa1yqlbUOuACfcuhAZBe1pqBwoIL1WBtFUMhbMtdAcWS3B17321ndjH0Nn6Z0QazXVdmvgHTmmnFPukf28Qxpej8b4CCmXWYWYeZdRzYmyNr-_QP9g3LHFzJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computing sets from all infinite subsets</title><source>American Mathematical Society Publications</source><creator>Greenberg, Noam ; Harrison-Trainor, Matthew ; Patey, Ludovic ; Turetsky, Dan</creator><creatorcontrib>Greenberg, Noam ; Harrison-Trainor, Matthew ; Patey, Ludovic ; Turetsky, Dan</creatorcontrib><description>A set is introreducible if it can be computed by every infinite subset of itself. Such a set can be thought of as coding information very robustly. We investigate introreducible sets and related notions. Our two main results are that the collection of introreducible sets is Π11\boldsymbol {\Pi }^1_1-complete, so that there is no simple characterization of the introreducible sets; and that every introenumerable set has an introreducible subset.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8468</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Logic ; Mathematics ; Research article</subject><ispartof>Transactions of the American Mathematical Society, 2021-08, Vol.374 (11), p.8131-8160</ispartof><rights>Copyright 2021 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-d0361487583e7ea1d7e7b71ae0458fd40c006f6b920783457c8ba72855ad4e303</citedby><orcidid>0000-0002-0304-7926 ; 0000-0003-2917-3848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2021-374-11/S0002-9947-2021-08468-8/S0002-9947-2021-08468-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2021-374-11/S0002-9947-2021-08468-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,776,780,881,23308,27903,27904,77582,77592</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02992972$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Greenberg, Noam</creatorcontrib><creatorcontrib>Harrison-Trainor, Matthew</creatorcontrib><creatorcontrib>Patey, Ludovic</creatorcontrib><creatorcontrib>Turetsky, Dan</creatorcontrib><title>Computing sets from all infinite subsets</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>A set is introreducible if it can be computed by every infinite subset of itself. Such a set can be thought of as coding information very robustly. We investigate introreducible sets and related notions. Our two main results are that the collection of introreducible sets is Π11\boldsymbol {\Pi }^1_1-complete, so that there is no simple characterization of the introreducible sets; and that every introenumerable set has an introreducible subset.</description><subject>Logic</subject><subject>Mathematics</subject><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8A8yMMAQenb8cR6riFKkSCwwW05ig1E-KjtF4t_TqAg2ptPdPe87PIRcU7inoGE1RTuskEs8IQsKiLlEAadkAQAs15qrc3KR0sdhBY5yQW7Lsd_tpzC8ZclNKfNx7DPbdVkYfBjC5LK0r-fPJTnztkvu6mcuyevm4aXc5tXz41O5rnJbMDXlLRSSclQCC6ecpa1yqlbUOuACfcuhAZBe1pqBwoIL1WBtFUMhbMtdAcWS3B17321ndjH0Nn6Z0QazXVdmvgHTmmnFPukf28Qxpej8b4CCmXWYWYeZdRzYmyNr-_QP9g3LHFzJ</recordid><startdate>20210830</startdate><enddate>20210830</enddate><creator>Greenberg, Noam</creator><creator>Harrison-Trainor, Matthew</creator><creator>Patey, Ludovic</creator><creator>Turetsky, Dan</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0304-7926</orcidid><orcidid>https://orcid.org/0000-0003-2917-3848</orcidid></search><sort><creationdate>20210830</creationdate><title>Computing sets from all infinite subsets</title><author>Greenberg, Noam ; Harrison-Trainor, Matthew ; Patey, Ludovic ; Turetsky, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-d0361487583e7ea1d7e7b71ae0458fd40c006f6b920783457c8ba72855ad4e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenberg, Noam</creatorcontrib><creatorcontrib>Harrison-Trainor, Matthew</creatorcontrib><creatorcontrib>Patey, Ludovic</creatorcontrib><creatorcontrib>Turetsky, Dan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenberg, Noam</au><au>Harrison-Trainor, Matthew</au><au>Patey, Ludovic</au><au>Turetsky, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing sets from all infinite subsets</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2021-08-30</date><risdate>2021</risdate><volume>374</volume><issue>11</issue><spage>8131</spage><epage>8160</epage><pages>8131-8160</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>A set is introreducible if it can be computed by every infinite subset of itself. Such a set can be thought of as coding information very robustly. We investigate introreducible sets and related notions. Our two main results are that the collection of introreducible sets is Π11\boldsymbol {\Pi }^1_1-complete, so that there is no simple characterization of the introreducible sets; and that every introenumerable set has an introreducible subset.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/8468</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-0304-7926</orcidid><orcidid>https://orcid.org/0000-0003-2917-3848</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2021-08, Vol.374 (11), p.8131-8160
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_02992972v1
source American Mathematical Society Publications
subjects Logic
Mathematics
Research article
title Computing sets from all infinite subsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20sets%20from%20all%20infinite%20subsets&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Greenberg,%20Noam&rft.date=2021-08-30&rft.volume=374&rft.issue=11&rft.spage=8131&rft.epage=8160&rft.pages=8131-8160&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8468&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02992972v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true