On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU
Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2020-10, Vol.202, p.929-946 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 946 |
---|---|
container_issue | |
container_start_page | 929 |
container_title | International journal of solids and structures |
container_volume | 202 |
creator | Barick, M.C. Gaillard, Y. Lejeune, A. Amiot, F. Richard, F. |
description | Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction. |
doi_str_mv | 10.1016/j.ijsolstr.2020.03.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02980611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320301037</els_id><sourcerecordid>2461034159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS1EJULLV0CWOHHYZez9Z9-oqpYiBfVCz5bjHdNZJXawnQi-PU5DuXIaefx7T35-jL0X0AoQ46elpSXHbS6plSChha4FMbxiK6Em3UjRj6_ZCupNM42qe8Pe5rwAQN9pWLHdQ-DlCfkh0M8DBsyZR88plEQhk-NHyi7i1uZSD_sU95gK4TO0swUT2W3m-Ksk6wrO3Ke448GGSGHGUGyhGPghU_jB726_PV6xC18F-O7vvGSPd7ffb-6b9cOXrzfX68b1UpZGT8oqLbs6hVW-08OMclJ-wmGjxUYJrfWgeuc3k5i8nb20NSbIceN03UzdJft49n2yW7NPtLPpt4mWzP312px2ILWCUYijqOyHM1vT1S_IxSzxkEJ9npH9KKDrxaArNZ4pl2LOCf0_WwHmVINZzEsN5lSDgc7UGqrw81mINe-RMJnsCIPDmRK6YuZI_7P4A2CilRI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461034159</pqid></control><display><type>article</type><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</creator><creatorcontrib>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</creatorcontrib><description>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.03.015</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Apex angle ; Energy dissipation ; FEMU ; Finite element method ; Identifiability ; Inverse problems ; Material properties ; Mathematical models ; Mechanical properties ; Mechanics ; Model updating ; Nanoindentation ; Parameter estimation ; Parameter identification ; Physics ; Poisson's ratio ; Polymers ; Robustness (mathematics) ; Two dimensional models ; Uniqueness ; Viscoelasticity</subject><ispartof>International journal of solids and structures, 2020-10, Vol.202, p.929-946</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</citedby><cites>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</cites><orcidid>0000-0003-1119-8086 ; 0000-0001-5756-1915 ; 0000-0002-2819-7656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768320301037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02980611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barick, M.C.</creatorcontrib><creatorcontrib>Gaillard, Y.</creatorcontrib><creatorcontrib>Lejeune, A.</creatorcontrib><creatorcontrib>Amiot, F.</creatorcontrib><creatorcontrib>Richard, F.</creatorcontrib><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><title>International journal of solids and structures</title><description>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</description><subject>Apex angle</subject><subject>Energy dissipation</subject><subject>FEMU</subject><subject>Finite element method</subject><subject>Identifiability</subject><subject>Inverse problems</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Model updating</subject><subject>Nanoindentation</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Poisson's ratio</subject><subject>Polymers</subject><subject>Robustness (mathematics)</subject><subject>Two dimensional models</subject><subject>Uniqueness</subject><subject>Viscoelasticity</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS1EJULLV0CWOHHYZez9Z9-oqpYiBfVCz5bjHdNZJXawnQi-PU5DuXIaefx7T35-jL0X0AoQ46elpSXHbS6plSChha4FMbxiK6Em3UjRj6_ZCupNM42qe8Pe5rwAQN9pWLHdQ-DlCfkh0M8DBsyZR88plEQhk-NHyi7i1uZSD_sU95gK4TO0swUT2W3m-Ksk6wrO3Ke448GGSGHGUGyhGPghU_jB726_PV6xC18F-O7vvGSPd7ffb-6b9cOXrzfX68b1UpZGT8oqLbs6hVW-08OMclJ-wmGjxUYJrfWgeuc3k5i8nb20NSbIceN03UzdJft49n2yW7NPtLPpt4mWzP312px2ILWCUYijqOyHM1vT1S_IxSzxkEJ9npH9KKDrxaArNZ4pl2LOCf0_WwHmVINZzEsN5lSDgc7UGqrw81mINe-RMJnsCIPDmRK6YuZI_7P4A2CilRI</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Barick, M.C.</creator><creator>Gaillard, Y.</creator><creator>Lejeune, A.</creator><creator>Amiot, F.</creator><creator>Richard, F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1119-8086</orcidid><orcidid>https://orcid.org/0000-0001-5756-1915</orcidid><orcidid>https://orcid.org/0000-0002-2819-7656</orcidid></search><sort><creationdate>20201001</creationdate><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><author>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apex angle</topic><topic>Energy dissipation</topic><topic>FEMU</topic><topic>Finite element method</topic><topic>Identifiability</topic><topic>Inverse problems</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Model updating</topic><topic>Nanoindentation</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Poisson's ratio</topic><topic>Polymers</topic><topic>Robustness (mathematics)</topic><topic>Two dimensional models</topic><topic>Uniqueness</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barick, M.C.</creatorcontrib><creatorcontrib>Gaillard, Y.</creatorcontrib><creatorcontrib>Lejeune, A.</creatorcontrib><creatorcontrib>Amiot, F.</creatorcontrib><creatorcontrib>Richard, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barick, M.C.</au><au>Gaillard, Y.</au><au>Lejeune, A.</au><au>Amiot, F.</au><au>Richard, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>202</volume><spage>929</spage><epage>946</epage><pages>929-946</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.03.015</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1119-8086</orcidid><orcidid>https://orcid.org/0000-0001-5756-1915</orcidid><orcidid>https://orcid.org/0000-0002-2819-7656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2020-10, Vol.202, p.929-946 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02980611v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Apex angle Energy dissipation FEMU Finite element method Identifiability Inverse problems Material properties Mathematical models Mechanical properties Mechanics Model updating Nanoindentation Parameter estimation Parameter identification Physics Poisson's ratio Polymers Robustness (mathematics) Two dimensional models Uniqueness Viscoelasticity |
title | On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20uniqueness%20of%20intrinsic%20viscoelastic%20properties%20of%20materials%20extracted%20from%20nanoindentation%20using%20FEMU&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Barick,%20M.C.&rft.date=2020-10-01&rft.volume=202&rft.spage=929&rft.epage=946&rft.pages=929-946&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.03.015&rft_dat=%3Cproquest_hal_p%3E2461034159%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461034159&rft_id=info:pmid/&rft_els_id=S0020768320301037&rfr_iscdi=true |