On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU

Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2020-10, Vol.202, p.929-946
Hauptverfasser: Barick, M.C., Gaillard, Y., Lejeune, A., Amiot, F., Richard, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue
container_start_page 929
container_title International journal of solids and structures
container_volume 202
creator Barick, M.C.
Gaillard, Y.
Lejeune, A.
Amiot, F.
Richard, F.
description Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.
doi_str_mv 10.1016/j.ijsolstr.2020.03.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02980611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768320301037</els_id><sourcerecordid>2461034159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS1EJULLV0CWOHHYZez9Z9-oqpYiBfVCz5bjHdNZJXawnQi-PU5DuXIaefx7T35-jL0X0AoQ46elpSXHbS6plSChha4FMbxiK6Em3UjRj6_ZCupNM42qe8Pe5rwAQN9pWLHdQ-DlCfkh0M8DBsyZR88plEQhk-NHyi7i1uZSD_sU95gK4TO0swUT2W3m-Ksk6wrO3Ke448GGSGHGUGyhGPghU_jB726_PV6xC18F-O7vvGSPd7ffb-6b9cOXrzfX68b1UpZGT8oqLbs6hVW-08OMclJ-wmGjxUYJrfWgeuc3k5i8nb20NSbIceN03UzdJft49n2yW7NPtLPpt4mWzP312px2ILWCUYijqOyHM1vT1S_IxSzxkEJ9npH9KKDrxaArNZ4pl2LOCf0_WwHmVINZzEsN5lSDgc7UGqrw81mINe-RMJnsCIPDmRK6YuZI_7P4A2CilRI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461034159</pqid></control><display><type>article</type><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</creator><creatorcontrib>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</creatorcontrib><description>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2020.03.015</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Apex angle ; Energy dissipation ; FEMU ; Finite element method ; Identifiability ; Inverse problems ; Material properties ; Mathematical models ; Mechanical properties ; Mechanics ; Model updating ; Nanoindentation ; Parameter estimation ; Parameter identification ; Physics ; Poisson's ratio ; Polymers ; Robustness (mathematics) ; Two dimensional models ; Uniqueness ; Viscoelasticity</subject><ispartof>International journal of solids and structures, 2020-10, Vol.202, p.929-946</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</citedby><cites>FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</cites><orcidid>0000-0003-1119-8086 ; 0000-0001-5756-1915 ; 0000-0002-2819-7656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768320301037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02980611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barick, M.C.</creatorcontrib><creatorcontrib>Gaillard, Y.</creatorcontrib><creatorcontrib>Lejeune, A.</creatorcontrib><creatorcontrib>Amiot, F.</creatorcontrib><creatorcontrib>Richard, F.</creatorcontrib><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><title>International journal of solids and structures</title><description>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</description><subject>Apex angle</subject><subject>Energy dissipation</subject><subject>FEMU</subject><subject>Finite element method</subject><subject>Identifiability</subject><subject>Inverse problems</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Model updating</subject><subject>Nanoindentation</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Poisson's ratio</subject><subject>Polymers</subject><subject>Robustness (mathematics)</subject><subject>Two dimensional models</subject><subject>Uniqueness</subject><subject>Viscoelasticity</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS1EJULLV0CWOHHYZez9Z9-oqpYiBfVCz5bjHdNZJXawnQi-PU5DuXIaefx7T35-jL0X0AoQ46elpSXHbS6plSChha4FMbxiK6Em3UjRj6_ZCupNM42qe8Pe5rwAQN9pWLHdQ-DlCfkh0M8DBsyZR88plEQhk-NHyi7i1uZSD_sU95gK4TO0swUT2W3m-Ksk6wrO3Ke448GGSGHGUGyhGPghU_jB726_PV6xC18F-O7vvGSPd7ffb-6b9cOXrzfX68b1UpZGT8oqLbs6hVW-08OMclJ-wmGjxUYJrfWgeuc3k5i8nb20NSbIceN03UzdJft49n2yW7NPtLPpt4mWzP312px2ILWCUYijqOyHM1vT1S_IxSzxkEJ9npH9KKDrxaArNZ4pl2LOCf0_WwHmVINZzEsN5lSDgc7UGqrw81mINe-RMJnsCIPDmRK6YuZI_7P4A2CilRI</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Barick, M.C.</creator><creator>Gaillard, Y.</creator><creator>Lejeune, A.</creator><creator>Amiot, F.</creator><creator>Richard, F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1119-8086</orcidid><orcidid>https://orcid.org/0000-0001-5756-1915</orcidid><orcidid>https://orcid.org/0000-0002-2819-7656</orcidid></search><sort><creationdate>20201001</creationdate><title>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</title><author>Barick, M.C. ; Gaillard, Y. ; Lejeune, A. ; Amiot, F. ; Richard, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-978a89239781a8f395de278f7e5b91b81999584cfb717fadf2a214026bc971773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apex angle</topic><topic>Energy dissipation</topic><topic>FEMU</topic><topic>Finite element method</topic><topic>Identifiability</topic><topic>Inverse problems</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Model updating</topic><topic>Nanoindentation</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Poisson's ratio</topic><topic>Polymers</topic><topic>Robustness (mathematics)</topic><topic>Two dimensional models</topic><topic>Uniqueness</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barick, M.C.</creatorcontrib><creatorcontrib>Gaillard, Y.</creatorcontrib><creatorcontrib>Lejeune, A.</creatorcontrib><creatorcontrib>Amiot, F.</creatorcontrib><creatorcontrib>Richard, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barick, M.C.</au><au>Gaillard, Y.</au><au>Lejeune, A.</au><au>Amiot, F.</au><au>Richard, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU</atitle><jtitle>International journal of solids and structures</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>202</volume><spage>929</spage><epage>946</epage><pages>929-946</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Instrumented nanoindentation is widely used to extract the material properties from the measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to model the mechanical behavior of a polymer material and a 2D-axisymmetric Finite Element Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results can accurately fit the experimental data. However, several quasi-solutions are shown to exist. These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an identifiability index based on the conditioning of the inverse problem. We show a correlation between the identifiability index and the energy dissipated by the material during the tests. The extraction of all material parameters remains impossible using a single test. Finally, some combinations of several nanoindentation triangular tests and indenter tip angles are also investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) with triangular load-unload tests is an interesting combination to reliably extract all the viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the interest of using this numerical identifiability index to design nanoindentation experiments to ensure the robustness of the intrinsic viscoelastic properties extraction.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2020.03.015</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1119-8086</orcidid><orcidid>https://orcid.org/0000-0001-5756-1915</orcidid><orcidid>https://orcid.org/0000-0002-2819-7656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2020-10, Vol.202, p.929-946
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_02980611v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Apex angle
Energy dissipation
FEMU
Finite element method
Identifiability
Inverse problems
Material properties
Mathematical models
Mechanical properties
Mechanics
Model updating
Nanoindentation
Parameter estimation
Parameter identification
Physics
Poisson's ratio
Polymers
Robustness (mathematics)
Two dimensional models
Uniqueness
Viscoelasticity
title On the uniqueness of intrinsic viscoelastic properties of materials extracted from nanoindentation using FEMU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20uniqueness%20of%20intrinsic%20viscoelastic%20properties%20of%20materials%20extracted%20from%20nanoindentation%20using%20FEMU&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Barick,%20M.C.&rft.date=2020-10-01&rft.volume=202&rft.spage=929&rft.epage=946&rft.pages=929-946&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2020.03.015&rft_dat=%3Cproquest_hal_p%3E2461034159%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461034159&rft_id=info:pmid/&rft_els_id=S0020768320301037&rfr_iscdi=true