A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (17), p.11664-11672
Hauptverfasser: Jiménez-Lamana, Javier, Marigliano, Lucile, Allouche, Joachim, Grassl, Bruno, Szpunar, Joanna, Reynaud, Stéphanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11672
container_issue 17
container_start_page 11664
container_title Analytical chemistry (Washington)
container_volume 92
creator Jiménez-Lamana, Javier
Marigliano, Lucile
Allouche, Joachim
Grassl, Bruno
Szpunar, Joanna
Reynaud, Stéphanie
description A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (
doi_str_mv 10.1021/acs.analchem.0c01536
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02977866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434054239</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-89876cd8b759b332e8514b4abd6812f51088fb7666667d637854b8f20da049a23</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEkPhDVhYYtMuMlz_xHGWo6HQkaZl0MDaukmcTqokDrZTKS_BM-MwpQsW3I2vjr9zdKWTJO8prCkw-hErv8YBu-pk-jVUQDMuXyQrmjFIpVLsZbICAJ6yHOB18sb7BwBKgcpV8mtD7uyj6cgxOAzmfiaNdSScDPlkgqlCaweCQ02-TTiEtmkr_CPZhtzhYMcOfWgrT8qZHNvhvjPkgC4qcdkN9RT9MXsmWzuNnanJIfI9klv0nhzHGO9sb4KbyeVue0hvj1dvk1cNdt68e3ovkh-fr79vb9L91y-77WafouA8pKpQuaxqVeZZUXLOjMqoKAWWtVSUNRkFpZoyl8vkteS5ykSpGgY1giiQ8Yvk6px7wk6Pru3Rzdpiq282e71owIo8V1I-0shentnR2Z-T8UH3ra9M1-Fg7OQ1E1xAJhgvIvrhH_TBTi42s1BCSVVIKSIlzlTlrPfONM8XUNBLoToWqv8Wqp8KjTY425bf59z_Wn4DadWmGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448689664</pqid></control><display><type>article</type><title>A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)</title><source>American Chemical Society Journals</source><creator>Jiménez-Lamana, Javier ; Marigliano, Lucile ; Allouche, Joachim ; Grassl, Bruno ; Szpunar, Joanna ; Reynaud, Stéphanie</creator><creatorcontrib>Jiménez-Lamana, Javier ; Marigliano, Lucile ; Allouche, Joachim ; Grassl, Bruno ; Szpunar, Joanna ; Reynaud, Stéphanie</creatorcontrib><description>A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (&lt;5% error). Polystyrene (PS) particle models with controlled surface functionalization mimicking the nanoplastics formed during natural degradation of plastic debris were used for the method development. The nanoplastic number concentration quantification limit was calculated at 8.4 × 105 NPTs L–1 and the calibration graph was linear up to 3.5 × 108 NPTs L–1. The method was applied to the analysis of nanoplastics of up to 1 μm in drinking, tap, and river water. The minimum detectable and quantifiable size depended on the degree of functionalization and the surface available for labeling. For a fully functionalized nanoplastic, the lower size detectable by this strategy is reported as 135 nm. In this study, authors use the recommendation for the definition of nanoplastics as plastic particles with sizes ranging between 1 nm and 1 μm, although it has not been accepted by a dedicated organization.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c01536</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Calibration ; Chemical Sciences ; Chemistry ; Control surfaces ; Drinking water ; Emission spectroscopy ; Gelatin ; Gold ; Inductively coupled plasma mass spectrometry ; Mass spectrometry ; Mass spectroscopy ; Material chemistry ; Mimicry ; Nanoparticles ; or physical chemistry ; Plastic debris ; Polymers ; Polystyrene ; Polystyrene resins ; Rivers ; Scientific imaging ; Selectivity ; Theoretical and ; Water analysis</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11664-11672</ispartof><rights>Copyright American Chemical Society Sep 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-89876cd8b759b332e8514b4abd6812f51088fb7666667d637854b8f20da049a23</citedby><cites>FETCH-LOGICAL-a433t-89876cd8b759b332e8514b4abd6812f51088fb7666667d637854b8f20da049a23</cites><orcidid>0000-0002-1554-1411 ; 0000-0001-9048-0842 ; 0000-0001-6467-6534 ; 0000-0002-5644-4933 ; 0000-0002-0846-8009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c01536$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c01536$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://univ-pau.hal.science/hal-02977866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiménez-Lamana, Javier</creatorcontrib><creatorcontrib>Marigliano, Lucile</creatorcontrib><creatorcontrib>Allouche, Joachim</creatorcontrib><creatorcontrib>Grassl, Bruno</creatorcontrib><creatorcontrib>Szpunar, Joanna</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><title>A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (&lt;5% error). Polystyrene (PS) particle models with controlled surface functionalization mimicking the nanoplastics formed during natural degradation of plastic debris were used for the method development. The nanoplastic number concentration quantification limit was calculated at 8.4 × 105 NPTs L–1 and the calibration graph was linear up to 3.5 × 108 NPTs L–1. The method was applied to the analysis of nanoplastics of up to 1 μm in drinking, tap, and river water. The minimum detectable and quantifiable size depended on the degree of functionalization and the surface available for labeling. For a fully functionalized nanoplastic, the lower size detectable by this strategy is reported as 135 nm. In this study, authors use the recommendation for the definition of nanoplastics as plastic particles with sizes ranging between 1 nm and 1 μm, although it has not been accepted by a dedicated organization.</description><subject>Analytical chemistry</subject><subject>Calibration</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Control surfaces</subject><subject>Drinking water</subject><subject>Emission spectroscopy</subject><subject>Gelatin</subject><subject>Gold</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Material chemistry</subject><subject>Mimicry</subject><subject>Nanoparticles</subject><subject>or physical chemistry</subject><subject>Plastic debris</subject><subject>Polymers</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Rivers</subject><subject>Scientific imaging</subject><subject>Selectivity</subject><subject>Theoretical and</subject><subject>Water analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEEkPhDVhYYtMuMlz_xHGWo6HQkaZl0MDaukmcTqokDrZTKS_BM-MwpQsW3I2vjr9zdKWTJO8prCkw-hErv8YBu-pk-jVUQDMuXyQrmjFIpVLsZbICAJ6yHOB18sb7BwBKgcpV8mtD7uyj6cgxOAzmfiaNdSScDPlkgqlCaweCQ02-TTiEtmkr_CPZhtzhYMcOfWgrT8qZHNvhvjPkgC4qcdkN9RT9MXsmWzuNnanJIfI9klv0nhzHGO9sb4KbyeVue0hvj1dvk1cNdt68e3ovkh-fr79vb9L91y-77WafouA8pKpQuaxqVeZZUXLOjMqoKAWWtVSUNRkFpZoyl8vkteS5ykSpGgY1giiQ8Yvk6px7wk6Pru3Rzdpiq282e71owIo8V1I-0shentnR2Z-T8UH3ra9M1-Fg7OQ1E1xAJhgvIvrhH_TBTi42s1BCSVVIKSIlzlTlrPfONM8XUNBLoToWqv8Wqp8KjTY425bf59z_Wn4DadWmGQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Jiménez-Lamana, Javier</creator><creator>Marigliano, Lucile</creator><creator>Allouche, Joachim</creator><creator>Grassl, Bruno</creator><creator>Szpunar, Joanna</creator><creator>Reynaud, Stéphanie</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1554-1411</orcidid><orcidid>https://orcid.org/0000-0001-9048-0842</orcidid><orcidid>https://orcid.org/0000-0001-6467-6534</orcidid><orcidid>https://orcid.org/0000-0002-5644-4933</orcidid><orcidid>https://orcid.org/0000-0002-0846-8009</orcidid></search><sort><creationdate>20200901</creationdate><title>A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)</title><author>Jiménez-Lamana, Javier ; Marigliano, Lucile ; Allouche, Joachim ; Grassl, Bruno ; Szpunar, Joanna ; Reynaud, Stéphanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-89876cd8b759b332e8514b4abd6812f51088fb7666667d637854b8f20da049a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Calibration</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Control surfaces</topic><topic>Drinking water</topic><topic>Emission spectroscopy</topic><topic>Gelatin</topic><topic>Gold</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Material chemistry</topic><topic>Mimicry</topic><topic>Nanoparticles</topic><topic>or physical chemistry</topic><topic>Plastic debris</topic><topic>Polymers</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Rivers</topic><topic>Scientific imaging</topic><topic>Selectivity</topic><topic>Theoretical and</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Lamana, Javier</creatorcontrib><creatorcontrib>Marigliano, Lucile</creatorcontrib><creatorcontrib>Allouche, Joachim</creatorcontrib><creatorcontrib>Grassl, Bruno</creatorcontrib><creatorcontrib>Szpunar, Joanna</creatorcontrib><creatorcontrib>Reynaud, Stéphanie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Lamana, Javier</au><au>Marigliano, Lucile</au><au>Allouche, Joachim</au><au>Grassl, Bruno</au><au>Szpunar, Joanna</au><au>Reynaud, Stéphanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>92</volume><issue>17</issue><spage>11664</spage><epage>11672</epage><pages>11664-11672</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A method for the detection and quantification of nanoplastics (NPTs) at environmentally relevant concentrations was developed. It is based on conjugating nanoplastics with functionalized metal (Au)-containing nanoparticles (NPs), thus making them detectable by highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) operated in single particle (SP) mode. The selectivity of the method was achieved by the coupling of negatively charged carboxylate groups present at the surface of nanoplastics with a positively charged gelatin attached to the custom-synthesized AuNPs. The adsorbed Au produced a SP-ICP-MS signal allowing the counting of individual nanoplastic particles, and hence their accurate quantification (&lt;5% error). Polystyrene (PS) particle models with controlled surface functionalization mimicking the nanoplastics formed during natural degradation of plastic debris were used for the method development. The nanoplastic number concentration quantification limit was calculated at 8.4 × 105 NPTs L–1 and the calibration graph was linear up to 3.5 × 108 NPTs L–1. The method was applied to the analysis of nanoplastics of up to 1 μm in drinking, tap, and river water. The minimum detectable and quantifiable size depended on the degree of functionalization and the surface available for labeling. For a fully functionalized nanoplastic, the lower size detectable by this strategy is reported as 135 nm. In this study, authors use the recommendation for the definition of nanoplastics as plastic particles with sizes ranging between 1 nm and 1 μm, although it has not been accepted by a dedicated organization.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.0c01536</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1554-1411</orcidid><orcidid>https://orcid.org/0000-0001-9048-0842</orcidid><orcidid>https://orcid.org/0000-0001-6467-6534</orcidid><orcidid>https://orcid.org/0000-0002-5644-4933</orcidid><orcidid>https://orcid.org/0000-0002-0846-8009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11664-11672
issn 0003-2700
1520-6882
language eng
recordid cdi_hal_primary_oai_HAL_hal_02977866v1
source American Chemical Society Journals
subjects Analytical chemistry
Calibration
Chemical Sciences
Chemistry
Control surfaces
Drinking water
Emission spectroscopy
Gelatin
Gold
Inductively coupled plasma mass spectrometry
Mass spectrometry
Mass spectroscopy
Material chemistry
Mimicry
Nanoparticles
or physical chemistry
Plastic debris
Polymers
Polystyrene
Polystyrene resins
Rivers
Scientific imaging
Selectivity
Theoretical and
Water analysis
title A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Strategy%20for%20the%20Detection%20and%20Quantification%20of%20Nanoplastics%20by%20Single%20Particle%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry%20(ICP-MS)&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jime%CC%81nez-Lamana,%20Javier&rft.date=2020-09-01&rft.volume=92&rft.issue=17&rft.spage=11664&rft.epage=11672&rft.pages=11664-11672&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c01536&rft_dat=%3Cproquest_hal_p%3E2434054239%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448689664&rft_id=info:pmid/&rfr_iscdi=true