Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake
We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupt...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-08, Vol.329 (5994), p.916-916 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 5994 |
container_start_page | 916 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 329 |
creator | Farías, Marcelo Vargas, Gabriel Tassara, Andrés Carretier, Sébastien Baize, Stéphane Melnick, Daniel Bataille, Klaus |
description | We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event. |
doi_str_mv | 10.1126/science.1192094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02974258v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179804241</sourcerecordid><originalsourceid>FETCH-LOGICAL-f242t-8954edcf3e6f945cc6012789654b4543651ec950fd2cd25302117c688093b99d3</originalsourceid><addsrcrecordid>eNqF0DtPxDAMAOAIgeB4zGxQsSCGgvNOxtOJl1QEEjBHudTlCr0Wmush_j1BBwwsTJbtT5ZtQvYpnFLK1FkMNbYBU2IZWLFGRhSszFPC18kIgKvcgJZbZDvGZ4DUs3yTbDFQmlIpRmRc-LbMC1xik01mvn3CmN31XTkELLPpR7aYYXbznplTkzGgkEzdoG-zc98vZm-Df8FdslH5JuLed9whjxfnD5OrvLi9vJ6Mi7xigi1yY6XAMlQcVWWFDEEBZdpYJcVUSMGVpBishKpkoWSSA6NUB2UMWD61tuQ75GQ1d-Yb99rXc99_uM7X7mpcuK8aMKsFk2ZJkz1e2de-exswLty8jgGbxrfYDdEZKTWVxth_pRbGaqAKkjz6I5-7oW_TyU4rxqxU5gsdfKNhOsfyd8-fhydwuAKV75x_6uvoHu_TZznQdKpWin8CK7aF_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762295680</pqid></control><display><type>article</type><title>Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Farías, Marcelo ; Vargas, Gabriel ; Tassara, Andrés ; Carretier, Sébastien ; Baize, Stéphane ; Melnick, Daniel ; Bataille, Klaus</creator><creatorcontrib>Farías, Marcelo ; Vargas, Gabriel ; Tassara, Andrés ; Carretier, Sébastien ; Baize, Stéphane ; Melnick, Daniel ; Bataille, Klaus</creatorcontrib><description>We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1192094</identifier><identifier>PMID: 20671154</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Convergence ; Dislocation models ; Displacement ; Earthquakes ; Estimates ; Markers ; Measuring instruments ; Plate tectonics ; Sciences of the Universe ; Segments ; Seismic engineering ; Seismic phenomena ; Seismology</subject><ispartof>Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5994), p.916-916</ispartof><rights>Copyright © 2010, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20671154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02974258$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Farías, Marcelo</creatorcontrib><creatorcontrib>Vargas, Gabriel</creatorcontrib><creatorcontrib>Tassara, Andrés</creatorcontrib><creatorcontrib>Carretier, Sébastien</creatorcontrib><creatorcontrib>Baize, Stéphane</creatorcontrib><creatorcontrib>Melnick, Daniel</creatorcontrib><creatorcontrib>Bataille, Klaus</creatorcontrib><title>Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event.</description><subject>Convergence</subject><subject>Dislocation models</subject><subject>Displacement</subject><subject>Earthquakes</subject><subject>Estimates</subject><subject>Markers</subject><subject>Measuring instruments</subject><subject>Plate tectonics</subject><subject>Sciences of the Universe</subject><subject>Segments</subject><subject>Seismic engineering</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPxDAMAOAIgeB4zGxQsSCGgvNOxtOJl1QEEjBHudTlCr0Wmush_j1BBwwsTJbtT5ZtQvYpnFLK1FkMNbYBU2IZWLFGRhSszFPC18kIgKvcgJZbZDvGZ4DUs3yTbDFQmlIpRmRc-LbMC1xik01mvn3CmN31XTkELLPpR7aYYXbznplTkzGgkEzdoG-zc98vZm-Df8FdslH5JuLed9whjxfnD5OrvLi9vJ6Mi7xigi1yY6XAMlQcVWWFDEEBZdpYJcVUSMGVpBishKpkoWSSA6NUB2UMWD61tuQ75GQ1d-Yb99rXc99_uM7X7mpcuK8aMKsFk2ZJkz1e2de-exswLty8jgGbxrfYDdEZKTWVxth_pRbGaqAKkjz6I5-7oW_TyU4rxqxU5gsdfKNhOsfyd8-fhydwuAKV75x_6uvoHu_TZznQdKpWin8CK7aF_w</recordid><startdate>20100820</startdate><enddate>20100820</enddate><creator>Farías, Marcelo</creator><creator>Vargas, Gabriel</creator><creator>Tassara, Andrés</creator><creator>Carretier, Sébastien</creator><creator>Baize, Stéphane</creator><creator>Melnick, Daniel</creator><creator>Bataille, Klaus</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>FBQ</scope><scope>NPM</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SM</scope><scope>1XC</scope></search><sort><creationdate>20100820</creationdate><title>Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake</title><author>Farías, Marcelo ; Vargas, Gabriel ; Tassara, Andrés ; Carretier, Sébastien ; Baize, Stéphane ; Melnick, Daniel ; Bataille, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f242t-8954edcf3e6f945cc6012789654b4543651ec950fd2cd25302117c688093b99d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Convergence</topic><topic>Dislocation models</topic><topic>Displacement</topic><topic>Earthquakes</topic><topic>Estimates</topic><topic>Markers</topic><topic>Measuring instruments</topic><topic>Plate tectonics</topic><topic>Sciences of the Universe</topic><topic>Segments</topic><topic>Seismic engineering</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farías, Marcelo</creatorcontrib><creatorcontrib>Vargas, Gabriel</creatorcontrib><creatorcontrib>Tassara, Andrés</creatorcontrib><creatorcontrib>Carretier, Sébastien</creatorcontrib><creatorcontrib>Baize, Stéphane</creatorcontrib><creatorcontrib>Melnick, Daniel</creatorcontrib><creatorcontrib>Bataille, Klaus</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farías, Marcelo</au><au>Vargas, Gabriel</au><au>Tassara, Andrés</au><au>Carretier, Sébastien</au><au>Baize, Stéphane</au><au>Melnick, Daniel</au><au>Bataille, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-08-20</date><risdate>2010</risdate><volume>329</volume><issue>5994</issue><spage>916</spage><epage>916</epage><pages>916-916</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, from subsided regions. A simple elastic dislocation model fits these observations well; model parameters give a similar seismic moment to seismological estimates and suggest that most of the plate convergence since the 1835 great earthquake was elastically stored and then released during this event.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>20671154</pmid><doi>10.1126/science.1192094</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5994), p.916-916 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02974258v1 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Convergence Dislocation models Displacement Earthquakes Estimates Markers Measuring instruments Plate tectonics Sciences of the Universe Segments Seismic engineering Seismic phenomena Seismology |
title | Land-Level Changes Produced by the Mw 8.8 2010 Chilean Earthquake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land-Level%20Changes%20Produced%20by%20the%20Mw%208.8%202010%20Chilean%20Earthquake&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Far%C3%ADas,%20Marcelo&rft.date=2010-08-20&rft.volume=329&rft.issue=5994&rft.spage=916&rft.epage=916&rft.pages=916-916&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1192094&rft_dat=%3Cproquest_hal_p%3E2179804241%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762295680&rft_id=info:pmid/20671154&rfr_iscdi=true |