Geometric continuity of blending surfaces

In this paper, we study the C 1 G 2 continuity of surfaces by a shape-blending process. Furthermore, we study the continuity of the ruled surfaces constructed by linear interpolation between two pairs of C 1 G 2 continuous curves. We give some conditions for the C 1 G 2 continuity of composite surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2013-03, Vol.45 (3), p.733-738
Hauptverfasser: Kouibia, A., Pasadas, M., Sbibih, D., Zidna, A., Belkhatir, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 3
container_start_page 733
container_title Computer aided design
container_volume 45
creator Kouibia, A.
Pasadas, M.
Sbibih, D.
Zidna, A.
Belkhatir, B.
description In this paper, we study the C 1 G 2 continuity of surfaces by a shape-blending process. Furthermore, we study the continuity of the ruled surfaces constructed by linear interpolation between two pairs of C 1 G 2 continuous curves. We give some conditions for the C 1 G 2 continuity of composite surfaces in a shape-blending process. A practical approach is proposed to maintain the C 1 G 2 continuity of Bezier surfaces pairs in a shape-blending process by adjusting the control points along the common boundary of the resulting surface-pair. We finish by proving and justifying the efficiency of the approaching method with some graphical examples.
doi_str_mv 10.1016/j.cad.2012.12.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02974192v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323225777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e0a99301a2c05bc1a2acbff87227166c4376f5ae17f757f47879462d57efbe8e3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxnNQcE7_AG89ukPre0natMcxdBMGXvQc0uxFM7p2Jq2w_96MifDBB-_9-A4_xh4QCgSsnvaFNbuCA_IiBUBesRkAQi5lXd6w2xj3AMBRNDO2WNNwoDF4m9mhH30_-fGUDS5rO-p3vv_M4hScsRTv2LUzXaT7v56zj5fn99Um376tX1fLbW45V2NOYJpGABpuoWxtamNb52qVvlhVVgpVudIQKqdK5aSqVSMrvisVuZZqEnO2uOx-mU4fgz-YcNKD8Xqz3OrzDXijJDb8BxP7eGGPYfieKI764KOlrjM9DVPUKLjgvFRKJRQvqA1DjIHc_zaCPmvTe5206bM2nZK0iV-x02FJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323225777</pqid></control><display><type>article</type><title>Geometric continuity of blending surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Kouibia, A. ; Pasadas, M. ; Sbibih, D. ; Zidna, A. ; Belkhatir, B.</creator><creatorcontrib>Kouibia, A. ; Pasadas, M. ; Sbibih, D. ; Zidna, A. ; Belkhatir, B.</creatorcontrib><description>In this paper, we study the C 1 G 2 continuity of surfaces by a shape-blending process. Furthermore, we study the continuity of the ruled surfaces constructed by linear interpolation between two pairs of C 1 G 2 continuous curves. We give some conditions for the C 1 G 2 continuity of composite surfaces in a shape-blending process. A practical approach is proposed to maintain the C 1 G 2 continuity of Bezier surfaces pairs in a shape-blending process by adjusting the control points along the common boundary of the resulting surface-pair. We finish by proving and justifying the efficiency of the approaching method with some graphical examples.</description><identifier>ISSN: 0010-4485</identifier><identifier>DOI: 10.1016/j.cad.2012.12.004</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Bezier ; Blending ; Boundaries ; Computer aided design ; Computer Science ; Construction ; Continuity ; Finishes ; Interpolation ; Mathematics</subject><ispartof>Computer aided design, 2013-03, Vol.45 (3), p.733-738</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e0a99301a2c05bc1a2acbff87227166c4376f5ae17f757f47879462d57efbe8e3</citedby><cites>FETCH-LOGICAL-c227t-e0a99301a2c05bc1a2acbff87227166c4376f5ae17f757f47879462d57efbe8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02974192$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouibia, A.</creatorcontrib><creatorcontrib>Pasadas, M.</creatorcontrib><creatorcontrib>Sbibih, D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><creatorcontrib>Belkhatir, B.</creatorcontrib><title>Geometric continuity of blending surfaces</title><title>Computer aided design</title><description>In this paper, we study the C 1 G 2 continuity of surfaces by a shape-blending process. Furthermore, we study the continuity of the ruled surfaces constructed by linear interpolation between two pairs of C 1 G 2 continuous curves. We give some conditions for the C 1 G 2 continuity of composite surfaces in a shape-blending process. A practical approach is proposed to maintain the C 1 G 2 continuity of Bezier surfaces pairs in a shape-blending process by adjusting the control points along the common boundary of the resulting surface-pair. We finish by proving and justifying the efficiency of the approaching method with some graphical examples.</description><subject>Bezier</subject><subject>Blending</subject><subject>Boundaries</subject><subject>Computer aided design</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Continuity</subject><subject>Finishes</subject><subject>Interpolation</subject><subject>Mathematics</subject><issn>0010-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxnNQcE7_AG89ukPre0natMcxdBMGXvQc0uxFM7p2Jq2w_96MifDBB-_9-A4_xh4QCgSsnvaFNbuCA_IiBUBesRkAQi5lXd6w2xj3AMBRNDO2WNNwoDF4m9mhH30_-fGUDS5rO-p3vv_M4hScsRTv2LUzXaT7v56zj5fn99Um376tX1fLbW45V2NOYJpGABpuoWxtamNb52qVvlhVVgpVudIQKqdK5aSqVSMrvisVuZZqEnO2uOx-mU4fgz-YcNKD8Xqz3OrzDXijJDb8BxP7eGGPYfieKI764KOlrjM9DVPUKLjgvFRKJRQvqA1DjIHc_zaCPmvTe5206bM2nZK0iV-x02FJ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Kouibia, A.</creator><creator>Pasadas, M.</creator><creator>Sbibih, D.</creator><creator>Zidna, A.</creator><creator>Belkhatir, B.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20130301</creationdate><title>Geometric continuity of blending surfaces</title><author>Kouibia, A. ; Pasadas, M. ; Sbibih, D. ; Zidna, A. ; Belkhatir, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e0a99301a2c05bc1a2acbff87227166c4376f5ae17f757f47879462d57efbe8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bezier</topic><topic>Blending</topic><topic>Boundaries</topic><topic>Computer aided design</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Continuity</topic><topic>Finishes</topic><topic>Interpolation</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouibia, A.</creatorcontrib><creatorcontrib>Pasadas, M.</creatorcontrib><creatorcontrib>Sbibih, D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><creatorcontrib>Belkhatir, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouibia, A.</au><au>Pasadas, M.</au><au>Sbibih, D.</au><au>Zidna, A.</au><au>Belkhatir, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric continuity of blending surfaces</atitle><jtitle>Computer aided design</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>45</volume><issue>3</issue><spage>733</spage><epage>738</epage><pages>733-738</pages><issn>0010-4485</issn><abstract>In this paper, we study the C 1 G 2 continuity of surfaces by a shape-blending process. Furthermore, we study the continuity of the ruled surfaces constructed by linear interpolation between two pairs of C 1 G 2 continuous curves. We give some conditions for the C 1 G 2 continuity of composite surfaces in a shape-blending process. A practical approach is proposed to maintain the C 1 G 2 continuity of Bezier surfaces pairs in a shape-blending process by adjusting the control points along the common boundary of the resulting surface-pair. We finish by proving and justifying the efficiency of the approaching method with some graphical examples.</abstract><pub>Elsevier</pub><doi>10.1016/j.cad.2012.12.004</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2013-03, Vol.45 (3), p.733-738
issn 0010-4485
language eng
recordid cdi_hal_primary_oai_HAL_hal_02974192v1
source Elsevier ScienceDirect Journals
subjects Bezier
Blending
Boundaries
Computer aided design
Computer Science
Construction
Continuity
Finishes
Interpolation
Mathematics
title Geometric continuity of blending surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20continuity%20of%20blending%20surfaces&rft.jtitle=Computer%20aided%20design&rft.au=Kouibia,%20A.&rft.date=2013-03-01&rft.volume=45&rft.issue=3&rft.spage=733&rft.epage=738&rft.pages=733-738&rft.issn=0010-4485&rft_id=info:doi/10.1016/j.cad.2012.12.004&rft_dat=%3Cproquest_hal_p%3E1323225777%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323225777&rft_id=info:pmid/&rfr_iscdi=true