Sommes de Dedekind associées à un corps de nombres totalement réel

We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2007-09, Vol.2007 (610), p.125-147
1. Verfasser: Charollois, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 610
container_start_page 125
container_title Journal für die reine und angewandte Mathematik
container_volume 2007
creator Charollois, Pierre
description We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.
doi_str_mv 10.1515/CRELLE.2007.069
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02969114v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_L0BXP447_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhi0EEqUws2ZlSHuO40szlhIoUiRuRWKznMQRoblUdkDwNqw8R18Ml6BOR_r0fWf4CTlHmCBHPl08JmmaTCiAnICID8gIWcRDHjF-SEae8pAh0GNy4twbAHCUdESSp65pjAsKE1yZwqyrtgi0c11ebX883n4H722Qd3bzp7Rdk1mP-67XtWlM2wfWe_UpOSp17czZ_x2T5-tktViG6d3N7WKehjnyKA5xhoZJkXGkuWBcsCjPZgXEYMqsQKMLnQmhqdGlLuSMUqAQGy6kNCgMIERjcjH8fdW12tiq0fZLdbpSy3mqdgxoLGJE9oHenQ5ubjvnrCn3AYLaLaaGxdRuMeUX80U4FJXrzede13athIwkVw8rplK4fLlnzBfRL_wgbfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><source>De Gruyter journals</source><creator>Charollois, Pierre</creator><creatorcontrib>Charollois, Pierre</creatorcontrib><description>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/CRELLE.2007.069</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><subject>Mathematics</subject><ispartof>Journal für die reine und angewandte Mathematik, 2007-09, Vol.2007 (610), p.125-147</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02969114$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charollois, Pierre</creatorcontrib><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</description><subject>Mathematics</subject><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAUhi0EEqUws2ZlSHuO40szlhIoUiRuRWKznMQRoblUdkDwNqw8R18Ml6BOR_r0fWf4CTlHmCBHPl08JmmaTCiAnICID8gIWcRDHjF-SEae8pAh0GNy4twbAHCUdESSp65pjAsKE1yZwqyrtgi0c11ebX883n4H722Qd3bzp7Rdk1mP-67XtWlM2wfWe_UpOSp17czZ_x2T5-tktViG6d3N7WKehjnyKA5xhoZJkXGkuWBcsCjPZgXEYMqsQKMLnQmhqdGlLuSMUqAQGy6kNCgMIERjcjH8fdW12tiq0fZLdbpSy3mqdgxoLGJE9oHenQ5ubjvnrCn3AYLaLaaGxdRuMeUX80U4FJXrzede13athIwkVw8rplK4fLlnzBfRL_wgbfU</recordid><startdate>20070926</startdate><enddate>20070926</enddate><creator>Charollois, Pierre</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070926</creationdate><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><author>Charollois, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charollois, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charollois, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sommes de Dedekind associées à un corps de nombres totalement réel</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2007-09-26</date><risdate>2007</risdate><volume>2007</volume><issue>610</issue><spage>125</spage><epage>147</epage><pages>125-147</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</abstract><pub>Walter de Gruyter</pub><doi>10.1515/CRELLE.2007.069</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2007-09, Vol.2007 (610), p.125-147
issn 0075-4102
1435-5345
language eng
recordid cdi_hal_primary_oai_HAL_hal_02969114v1
source De Gruyter journals
subjects Mathematics
title Sommes de Dedekind associées à un corps de nombres totalement réel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sommes%20de%20Dedekind%20associ%C3%A9es%20%C3%A0%20un%20corps%20de%20nombres%20totalement%20r%C3%A9el&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Charollois,%20Pierre&rft.date=2007-09-26&rft.volume=2007&rft.issue=610&rft.spage=125&rft.epage=147&rft.pages=125-147&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/CRELLE.2007.069&rft_dat=%3Cistex_hal_p%3Eark_67375_QT4_L0BXP447_0%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true