Sommes de Dedekind associées à un corps de nombres totalement réel
We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker l...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2007-09, Vol.2007 (610), p.125-147 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 610 |
container_start_page | 125 |
container_title | Journal für die reine und angewandte Mathematik |
container_volume | 2007 |
creator | Charollois, Pierre |
description | We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions. |
doi_str_mv | 10.1515/CRELLE.2007.069 |
format | Article |
fullrecord | <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02969114v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_QT4_L0BXP447_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhi0EEqUws2ZlSHuO40szlhIoUiRuRWKznMQRoblUdkDwNqw8R18Ml6BOR_r0fWf4CTlHmCBHPl08JmmaTCiAnICID8gIWcRDHjF-SEae8pAh0GNy4twbAHCUdESSp65pjAsKE1yZwqyrtgi0c11ebX883n4H722Qd3bzp7Rdk1mP-67XtWlM2wfWe_UpOSp17czZ_x2T5-tktViG6d3N7WKehjnyKA5xhoZJkXGkuWBcsCjPZgXEYMqsQKMLnQmhqdGlLuSMUqAQGy6kNCgMIERjcjH8fdW12tiq0fZLdbpSy3mqdgxoLGJE9oHenQ5ubjvnrCn3AYLaLaaGxdRuMeUX80U4FJXrzede13athIwkVw8rplK4fLlnzBfRL_wgbfU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><source>De Gruyter journals</source><creator>Charollois, Pierre</creator><creatorcontrib>Charollois, Pierre</creatorcontrib><description>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/CRELLE.2007.069</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><subject>Mathematics</subject><ispartof>Journal für die reine und angewandte Mathematik, 2007-09, Vol.2007 (610), p.125-147</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02969114$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charollois, Pierre</creatorcontrib><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><title>Journal für die reine und angewandte Mathematik</title><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><description>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</description><subject>Mathematics</subject><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAUhi0EEqUws2ZlSHuO40szlhIoUiRuRWKznMQRoblUdkDwNqw8R18Ml6BOR_r0fWf4CTlHmCBHPl08JmmaTCiAnICID8gIWcRDHjF-SEae8pAh0GNy4twbAHCUdESSp65pjAsKE1yZwqyrtgi0c11ebX883n4H722Qd3bzp7Rdk1mP-67XtWlM2wfWe_UpOSp17czZ_x2T5-tktViG6d3N7WKehjnyKA5xhoZJkXGkuWBcsCjPZgXEYMqsQKMLnQmhqdGlLuSMUqAQGy6kNCgMIERjcjH8fdW12tiq0fZLdbpSy3mqdgxoLGJE9oHenQ5ubjvnrCn3AYLaLaaGxdRuMeUX80U4FJXrzede13athIwkVw8rplK4fLlnzBfRL_wgbfU</recordid><startdate>20070926</startdate><enddate>20070926</enddate><creator>Charollois, Pierre</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070926</creationdate><title>Sommes de Dedekind associées à un corps de nombres totalement réel</title><author>Charollois, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1539-181e476b512c645643cb8d090efbd1eadab66a2eafad78220209e5677e16e0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charollois, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charollois, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sommes de Dedekind associées à un corps de nombres totalement réel</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><addtitle>Journal für die reine und angewandte Mathematik (Crelles Journal)</addtitle><date>2007-09-26</date><risdate>2007</risdate><volume>2007</volume><issue>610</issue><spage>125</spage><epage>147</epage><pages>125-147</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We extend the construction of Dedekind sums to the case of an arbitrary totally real number field of class number one. Our method is based on the choice of some convenient analogue of the logarithm of Dedekind's η function in this context. We deduce its modular transformation from a Kronecker limit formula established by Asai. It allows us to introduce a generalization of Rademacher's Φ function. We use this function to define the corresponding Dedekind sums and derive their main properties. These sums are not rational numbers but real-analytic functions.</abstract><pub>Walter de Gruyter</pub><doi>10.1515/CRELLE.2007.069</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-4102 |
ispartof | Journal für die reine und angewandte Mathematik, 2007-09, Vol.2007 (610), p.125-147 |
issn | 0075-4102 1435-5345 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02969114v1 |
source | De Gruyter journals |
subjects | Mathematics |
title | Sommes de Dedekind associées à un corps de nombres totalement réel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sommes%20de%20Dedekind%20associ%C3%A9es%20%C3%A0%20un%20corps%20de%20nombres%20totalement%20r%C3%A9el&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=Charollois,%20Pierre&rft.date=2007-09-26&rft.volume=2007&rft.issue=610&rft.spage=125&rft.epage=147&rft.pages=125-147&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/CRELLE.2007.069&rft_dat=%3Cistex_hal_p%3Eark_67375_QT4_L0BXP447_0%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |