Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation
The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study...
Gespeichert in:
Veröffentlicht in: | Materialia 2019-03, Vol.5, p.100190, Article 100190 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100190 |
container_title | Materialia |
container_volume | 5 |
creator | Lechartier, Audrey Meyer, Nicolas Estevez, Rafael Mantel, Marc Martin, Guilhem Parry, Guillaume Veron, Muriel Deschamps, Alexis |
description | The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential. |
doi_str_mv | 10.1016/j.mtla.2018.100190 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02968522v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589152918302308</els_id><sourcerecordid>S2589152918302308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</originalsourceid><addsrcrecordid>eNp9UcFq3DAUNKWFhiQ_0JOuhexGkqW1VXIJaZsEFgKhPYtn6RlrkaVFcjbZL8pvRmZD2FNOb5g3M0JvquoHo0tG2epysxwnD0tOWVsIyhT9Up1w2aoFk1x9PcLfq_OcN5RSzoQQrTipXn9jH9MIk4uBdDjAzsVEYk88QiD2aevxheQJXPCYc0GIPpNnNw0Fp0ITF-yTQUtGSBOG7CZnSNmE_JH7izxGj3OoPXpsRDNAcHnMFwS8j3tiBhxdSd0TCJZsEx7Jz6pvPfiM5-_ztPr_98-_m7vF-uH2_uZ6vTB1004L26w4VVYhSIl90zGpJBojuq7DTsmGirZuBIKhgkOtjLSqkyCh7rDHRor6tPp5yB3A621y5Vd7HcHpu-u1njnK1aqVnO9Y0fKD1qSYc8L-w8ConpvRGz03o-dm9KGZYro6mModcecw6WwchnJBl9BM2kb3mf0Nv62cjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><source>Alma/SFX Local Collection</source><creator>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</creator><creatorcontrib>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</creatorcontrib><description>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</description><identifier>ISSN: 2589-1529</identifier><identifier>EISSN: 2589-1529</identifier><identifier>DOI: 10.1016/j.mtla.2018.100190</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical Sciences ; High energy X-ray diffraction ; Material chemistry ; Strain hardening ; Strain-induced martensite ; TRIP-aided duplex stainless steels</subject><ispartof>Materialia, 2019-03, Vol.5, p.100190, Article 100190</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</citedby><cites>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</cites><orcidid>0000-0002-6038-9201 ; 0000-0002-9477-2831 ; 0000-0002-4983-8336 ; 0000-0003-4519-8666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02968522$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lechartier, Audrey</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Estevez, Rafael</creatorcontrib><creatorcontrib>Mantel, Marc</creatorcontrib><creatorcontrib>Martin, Guilhem</creatorcontrib><creatorcontrib>Parry, Guillaume</creatorcontrib><creatorcontrib>Veron, Muriel</creatorcontrib><creatorcontrib>Deschamps, Alexis</creatorcontrib><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><title>Materialia</title><description>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</description><subject>Chemical Sciences</subject><subject>High energy X-ray diffraction</subject><subject>Material chemistry</subject><subject>Strain hardening</subject><subject>Strain-induced martensite</subject><subject>TRIP-aided duplex stainless steels</subject><issn>2589-1529</issn><issn>2589-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcFq3DAUNKWFhiQ_0JOuhexGkqW1VXIJaZsEFgKhPYtn6RlrkaVFcjbZL8pvRmZD2FNOb5g3M0JvquoHo0tG2epysxwnD0tOWVsIyhT9Up1w2aoFk1x9PcLfq_OcN5RSzoQQrTipXn9jH9MIk4uBdDjAzsVEYk88QiD2aevxheQJXPCYc0GIPpNnNw0Fp0ITF-yTQUtGSBOG7CZnSNmE_JH7izxGj3OoPXpsRDNAcHnMFwS8j3tiBhxdSd0TCJZsEx7Jz6pvPfiM5-_ztPr_98-_m7vF-uH2_uZ6vTB1004L26w4VVYhSIl90zGpJBojuq7DTsmGirZuBIKhgkOtjLSqkyCh7rDHRor6tPp5yB3A621y5Vd7HcHpu-u1njnK1aqVnO9Y0fKD1qSYc8L-w8ConpvRGz03o-dm9KGZYro6mModcecw6WwchnJBl9BM2kb3mf0Nv62cjg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Lechartier, Audrey</creator><creator>Meyer, Nicolas</creator><creator>Estevez, Rafael</creator><creator>Mantel, Marc</creator><creator>Martin, Guilhem</creator><creator>Parry, Guillaume</creator><creator>Veron, Muriel</creator><creator>Deschamps, Alexis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid><orcidid>https://orcid.org/0000-0002-9477-2831</orcidid><orcidid>https://orcid.org/0000-0002-4983-8336</orcidid><orcidid>https://orcid.org/0000-0003-4519-8666</orcidid></search><sort><creationdate>201903</creationdate><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><author>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>High energy X-ray diffraction</topic><topic>Material chemistry</topic><topic>Strain hardening</topic><topic>Strain-induced martensite</topic><topic>TRIP-aided duplex stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lechartier, Audrey</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Estevez, Rafael</creatorcontrib><creatorcontrib>Mantel, Marc</creatorcontrib><creatorcontrib>Martin, Guilhem</creatorcontrib><creatorcontrib>Parry, Guillaume</creatorcontrib><creatorcontrib>Veron, Muriel</creatorcontrib><creatorcontrib>Deschamps, Alexis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lechartier, Audrey</au><au>Meyer, Nicolas</au><au>Estevez, Rafael</au><au>Mantel, Marc</au><au>Martin, Guilhem</au><au>Parry, Guillaume</au><au>Veron, Muriel</au><au>Deschamps, Alexis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</atitle><jtitle>Materialia</jtitle><date>2019-03</date><risdate>2019</risdate><volume>5</volume><spage>100190</spage><pages>100190-</pages><artnum>100190</artnum><issn>2589-1529</issn><eissn>2589-1529</eissn><abstract>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mtla.2018.100190</doi><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid><orcidid>https://orcid.org/0000-0002-9477-2831</orcidid><orcidid>https://orcid.org/0000-0002-4983-8336</orcidid><orcidid>https://orcid.org/0000-0003-4519-8666</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-1529 |
ispartof | Materialia, 2019-03, Vol.5, p.100190, Article 100190 |
issn | 2589-1529 2589-1529 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02968522v1 |
source | Alma/SFX Local Collection |
subjects | Chemical Sciences High energy X-ray diffraction Material chemistry Strain hardening Strain-induced martensite TRIP-aided duplex stainless steels |
title | Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20behavior%20of%20lean%20duplex%20stainless%20steels%20with%20strain%20induced%20martensitic%20transformation:%20Role%20of%20deformation%20mechanisms,%20alloy%20chemistry%20and%20predeformation&rft.jtitle=Materialia&rft.au=Lechartier,%20Audrey&rft.date=2019-03&rft.volume=5&rft.spage=100190&rft.pages=100190-&rft.artnum=100190&rft.issn=2589-1529&rft.eissn=2589-1529&rft_id=info:doi/10.1016/j.mtla.2018.100190&rft_dat=%3Celsevier_hal_p%3ES2589152918302308%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2589152918302308&rfr_iscdi=true |