Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation

The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materialia 2019-03, Vol.5, p.100190, Article 100190
Hauptverfasser: Lechartier, Audrey, Meyer, Nicolas, Estevez, Rafael, Mantel, Marc, Martin, Guilhem, Parry, Guillaume, Veron, Muriel, Deschamps, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100190
container_title Materialia
container_volume 5
creator Lechartier, Audrey
Meyer, Nicolas
Estevez, Rafael
Mantel, Marc
Martin, Guilhem
Parry, Guillaume
Veron, Muriel
Deschamps, Alexis
description The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.
doi_str_mv 10.1016/j.mtla.2018.100190
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02968522v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589152918302308</els_id><sourcerecordid>S2589152918302308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</originalsourceid><addsrcrecordid>eNp9UcFq3DAUNKWFhiQ_0JOuhexGkqW1VXIJaZsEFgKhPYtn6RlrkaVFcjbZL8pvRmZD2FNOb5g3M0JvquoHo0tG2epysxwnD0tOWVsIyhT9Up1w2aoFk1x9PcLfq_OcN5RSzoQQrTipXn9jH9MIk4uBdDjAzsVEYk88QiD2aevxheQJXPCYc0GIPpNnNw0Fp0ITF-yTQUtGSBOG7CZnSNmE_JH7izxGj3OoPXpsRDNAcHnMFwS8j3tiBhxdSd0TCJZsEx7Jz6pvPfiM5-_ztPr_98-_m7vF-uH2_uZ6vTB1004L26w4VVYhSIl90zGpJBojuq7DTsmGirZuBIKhgkOtjLSqkyCh7rDHRor6tPp5yB3A621y5Vd7HcHpu-u1njnK1aqVnO9Y0fKD1qSYc8L-w8ConpvRGz03o-dm9KGZYro6mModcecw6WwchnJBl9BM2kb3mf0Nv62cjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><source>Alma/SFX Local Collection</source><creator>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</creator><creatorcontrib>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</creatorcontrib><description>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</description><identifier>ISSN: 2589-1529</identifier><identifier>EISSN: 2589-1529</identifier><identifier>DOI: 10.1016/j.mtla.2018.100190</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical Sciences ; High energy X-ray diffraction ; Material chemistry ; Strain hardening ; Strain-induced martensite ; TRIP-aided duplex stainless steels</subject><ispartof>Materialia, 2019-03, Vol.5, p.100190, Article 100190</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</citedby><cites>FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</cites><orcidid>0000-0002-6038-9201 ; 0000-0002-9477-2831 ; 0000-0002-4983-8336 ; 0000-0003-4519-8666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02968522$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lechartier, Audrey</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Estevez, Rafael</creatorcontrib><creatorcontrib>Mantel, Marc</creatorcontrib><creatorcontrib>Martin, Guilhem</creatorcontrib><creatorcontrib>Parry, Guillaume</creatorcontrib><creatorcontrib>Veron, Muriel</creatorcontrib><creatorcontrib>Deschamps, Alexis</creatorcontrib><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><title>Materialia</title><description>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</description><subject>Chemical Sciences</subject><subject>High energy X-ray diffraction</subject><subject>Material chemistry</subject><subject>Strain hardening</subject><subject>Strain-induced martensite</subject><subject>TRIP-aided duplex stainless steels</subject><issn>2589-1529</issn><issn>2589-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcFq3DAUNKWFhiQ_0JOuhexGkqW1VXIJaZsEFgKhPYtn6RlrkaVFcjbZL8pvRmZD2FNOb5g3M0JvquoHo0tG2epysxwnD0tOWVsIyhT9Up1w2aoFk1x9PcLfq_OcN5RSzoQQrTipXn9jH9MIk4uBdDjAzsVEYk88QiD2aevxheQJXPCYc0GIPpNnNw0Fp0ITF-yTQUtGSBOG7CZnSNmE_JH7izxGj3OoPXpsRDNAcHnMFwS8j3tiBhxdSd0TCJZsEx7Jz6pvPfiM5-_ztPr_98-_m7vF-uH2_uZ6vTB1004L26w4VVYhSIl90zGpJBojuq7DTsmGirZuBIKhgkOtjLSqkyCh7rDHRor6tPp5yB3A621y5Vd7HcHpu-u1njnK1aqVnO9Y0fKD1qSYc8L-w8ConpvRGz03o-dm9KGZYro6mModcecw6WwchnJBl9BM2kb3mf0Nv62cjg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Lechartier, Audrey</creator><creator>Meyer, Nicolas</creator><creator>Estevez, Rafael</creator><creator>Mantel, Marc</creator><creator>Martin, Guilhem</creator><creator>Parry, Guillaume</creator><creator>Veron, Muriel</creator><creator>Deschamps, Alexis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid><orcidid>https://orcid.org/0000-0002-9477-2831</orcidid><orcidid>https://orcid.org/0000-0002-4983-8336</orcidid><orcidid>https://orcid.org/0000-0003-4519-8666</orcidid></search><sort><creationdate>201903</creationdate><title>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</title><author>Lechartier, Audrey ; Meyer, Nicolas ; Estevez, Rafael ; Mantel, Marc ; Martin, Guilhem ; Parry, Guillaume ; Veron, Muriel ; Deschamps, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d76209d9ea55ef7b1595ecc4bbbeb957048374eac042a39c5d9b5a5a3befe7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>High energy X-ray diffraction</topic><topic>Material chemistry</topic><topic>Strain hardening</topic><topic>Strain-induced martensite</topic><topic>TRIP-aided duplex stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lechartier, Audrey</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Estevez, Rafael</creatorcontrib><creatorcontrib>Mantel, Marc</creatorcontrib><creatorcontrib>Martin, Guilhem</creatorcontrib><creatorcontrib>Parry, Guillaume</creatorcontrib><creatorcontrib>Veron, Muriel</creatorcontrib><creatorcontrib>Deschamps, Alexis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lechartier, Audrey</au><au>Meyer, Nicolas</au><au>Estevez, Rafael</au><au>Mantel, Marc</au><au>Martin, Guilhem</au><au>Parry, Guillaume</au><au>Veron, Muriel</au><au>Deschamps, Alexis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation</atitle><jtitle>Materialia</jtitle><date>2019-03</date><risdate>2019</risdate><volume>5</volume><spage>100190</spage><pages>100190-</pages><artnum>100190</artnum><issn>2589-1529</issn><eissn>2589-1529</eissn><abstract>The design of duplex stainless steels (DSS) with strain induced martensite (SIM) transformation relies on the optimization of austenite stability. The goal is to achieve a distribution of SIM over a wide range of strain so as to get the best combination of strength and ductility. A systematic study of plastic deformation mechanisms, of the link between phase chemistry, SIM kinetics and related stress–strain behavior has been carried out by combining advanced characterization: orientation mapping in the transmission electron microscope, in-situ high energy X-ray diffraction, and microscopic digital image correlation. The role of Ni/N balance on controlling the austenite stability has been investigated in medium-Ni lean DSS steels containing ∼4 wt% Ni. Results show that SIM occurs in the DSS by a two-steps transformation: first some austenite transforms into ε-martensite and the latter subsequently transforms into α’-martensite at the intersections of ε-bands and further grow into the austenite. It is found that SIM formation occurs at a slower kinetics in the DSS as compared to its fully austenitic counterpart, however with a similar relationship to flow stress. An optimal level of mechanical behavior is shown to be related to an optimal rate of SIM formation during tensile testing. The yield strength can be improved by rolling with a limited impact on the phase transformation potential.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mtla.2018.100190</doi><orcidid>https://orcid.org/0000-0002-6038-9201</orcidid><orcidid>https://orcid.org/0000-0002-9477-2831</orcidid><orcidid>https://orcid.org/0000-0002-4983-8336</orcidid><orcidid>https://orcid.org/0000-0003-4519-8666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-1529
ispartof Materialia, 2019-03, Vol.5, p.100190, Article 100190
issn 2589-1529
2589-1529
language eng
recordid cdi_hal_primary_oai_HAL_hal_02968522v1
source Alma/SFX Local Collection
subjects Chemical Sciences
High energy X-ray diffraction
Material chemistry
Strain hardening
Strain-induced martensite
TRIP-aided duplex stainless steels
title Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20behavior%20of%20lean%20duplex%20stainless%20steels%20with%20strain%20induced%20martensitic%20transformation:%20Role%20of%20deformation%20mechanisms,%20alloy%20chemistry%20and%20predeformation&rft.jtitle=Materialia&rft.au=Lechartier,%20Audrey&rft.date=2019-03&rft.volume=5&rft.spage=100190&rft.pages=100190-&rft.artnum=100190&rft.issn=2589-1529&rft.eissn=2589-1529&rft_id=info:doi/10.1016/j.mtla.2018.100190&rft_dat=%3Celsevier_hal_p%3ES2589152918302308%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2589152918302308&rfr_iscdi=true