Convergence in games with continua of equilibria
In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash e...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical economics 2020-10, Vol.90, p.25-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | Journal of mathematical economics |
container_volume | 90 |
creator | Bervoets, Sebastian Faure, Mathieu |
description | In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear. |
doi_str_mv | 10.1016/j.jmateco.2020.05.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02964989v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406820300628</els_id><sourcerecordid>2449989683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSh45UXrSfPR5ErGUCcMvNHrkKbplrI1W9JO_Pe2dHjr1YHD876c8yB0jyHDgPlTkzV73VnjsxxyyIBlAPwCzbAoSIoZEZdoBgRoSoGLa3QTYwMARQFihmDp25MNG9sam7g22ei9jcm367aJ8W3n2l4nvk7ssXc7Vwanb9FVrXfR3p3nHH29vnwuV-n64-19uVinhgrSpRXBxhhZY0IYZ7XW1JSS5lbaAnhhypxzzLnVjJWSlyUddrbkrDICMNU5JnP0OPVu9U4dgtvr8KO8dmq1WKtxB7nkVAp5GtmHiT0Ef-xt7FTj-9AO56mcUjlAXJCBYhNlgo8x2PqvFoMaRapGnUWqUaQCpgaRQ-55ytnh3ZOzQUXjRl-VC9Z0qvLun4Zf2gh8xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449989683</pqid></control><display><type>article</type><title>Convergence in games with continua of equilibria</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bervoets, Sebastian ; Faure, Mathieu</creator><creatorcontrib>Bervoets, Sebastian ; Faure, Mathieu</creatorcontrib><description>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2020.05.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Best-response dynamics ; Continua of Nash equilibria ; Convergence ; Dynamical systems ; Economics and Finance ; Equilibrium ; Game theory ; Games ; Humanities and Social Sciences ; Public good ; Questions</subject><ispartof>Journal of mathematical economics, 2020-10, Vol.90, p.25-30</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2020</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</citedby><cites>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2020.05.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02964989$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bervoets, Sebastian</creatorcontrib><creatorcontrib>Faure, Mathieu</creatorcontrib><title>Convergence in games with continua of equilibria</title><title>Journal of mathematical economics</title><description>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</description><subject>Best-response dynamics</subject><subject>Continua of Nash equilibria</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Humanities and Social Sciences</subject><subject>Public good</subject><subject>Questions</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QSh45UXrSfPR5ErGUCcMvNHrkKbplrI1W9JO_Pe2dHjr1YHD876c8yB0jyHDgPlTkzV73VnjsxxyyIBlAPwCzbAoSIoZEZdoBgRoSoGLa3QTYwMARQFihmDp25MNG9sam7g22ei9jcm367aJ8W3n2l4nvk7ssXc7Vwanb9FVrXfR3p3nHH29vnwuV-n64-19uVinhgrSpRXBxhhZY0IYZ7XW1JSS5lbaAnhhypxzzLnVjJWSlyUddrbkrDICMNU5JnP0OPVu9U4dgtvr8KO8dmq1WKtxB7nkVAp5GtmHiT0Ef-xt7FTj-9AO56mcUjlAXJCBYhNlgo8x2PqvFoMaRapGnUWqUaQCpgaRQ-55ytnh3ZOzQUXjRl-VC9Z0qvLun4Zf2gh8xQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bervoets, Sebastian</creator><creator>Faure, Mathieu</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope></search><sort><creationdate>20201001</creationdate><title>Convergence in games with continua of equilibria</title><author>Bervoets, Sebastian ; Faure, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Best-response dynamics</topic><topic>Continua of Nash equilibria</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Humanities and Social Sciences</topic><topic>Public good</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bervoets, Sebastian</creatorcontrib><creatorcontrib>Faure, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bervoets, Sebastian</au><au>Faure, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence in games with continua of equilibria</atitle><jtitle>Journal of mathematical economics</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>90</volume><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><abstract>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2020.05.006</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4068 |
ispartof | Journal of mathematical economics, 2020-10, Vol.90, p.25-30 |
issn | 0304-4068 1873-1538 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02964989v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Best-response dynamics Continua of Nash equilibria Convergence Dynamical systems Economics and Finance Equilibrium Game theory Games Humanities and Social Sciences Public good Questions |
title | Convergence in games with continua of equilibria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20in%20games%20with%20continua%20of%20equilibria&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Bervoets,%20Sebastian&rft.date=2020-10-01&rft.volume=90&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=0304-4068&rft.eissn=1873-1538&rft_id=info:doi/10.1016/j.jmateco.2020.05.006&rft_dat=%3Cproquest_hal_p%3E2449989683%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449989683&rft_id=info:pmid/&rft_els_id=S0304406820300628&rfr_iscdi=true |