Convergence in games with continua of equilibria

In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2020-10, Vol.90, p.25-30
Hauptverfasser: Bervoets, Sebastian, Faure, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 25
container_title Journal of mathematical economics
container_volume 90
creator Bervoets, Sebastian
Faure, Mathieu
description In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.
doi_str_mv 10.1016/j.jmateco.2020.05.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02964989v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406820300628</els_id><sourcerecordid>2449989683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSh45UXrSfPR5ErGUCcMvNHrkKbplrI1W9JO_Pe2dHjr1YHD876c8yB0jyHDgPlTkzV73VnjsxxyyIBlAPwCzbAoSIoZEZdoBgRoSoGLa3QTYwMARQFihmDp25MNG9sam7g22ei9jcm367aJ8W3n2l4nvk7ssXc7Vwanb9FVrXfR3p3nHH29vnwuV-n64-19uVinhgrSpRXBxhhZY0IYZ7XW1JSS5lbaAnhhypxzzLnVjJWSlyUddrbkrDICMNU5JnP0OPVu9U4dgtvr8KO8dmq1WKtxB7nkVAp5GtmHiT0Ef-xt7FTj-9AO56mcUjlAXJCBYhNlgo8x2PqvFoMaRapGnUWqUaQCpgaRQ-55ytnh3ZOzQUXjRl-VC9Z0qvLun4Zf2gh8xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449989683</pqid></control><display><type>article</type><title>Convergence in games with continua of equilibria</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bervoets, Sebastian ; Faure, Mathieu</creator><creatorcontrib>Bervoets, Sebastian ; Faure, Mathieu</creatorcontrib><description>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2020.05.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Best-response dynamics ; Continua of Nash equilibria ; Convergence ; Dynamical systems ; Economics and Finance ; Equilibrium ; Game theory ; Games ; Humanities and Social Sciences ; Public good ; Questions</subject><ispartof>Journal of mathematical economics, 2020-10, Vol.90, p.25-30</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2020</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</citedby><cites>FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2020.05.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02964989$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bervoets, Sebastian</creatorcontrib><creatorcontrib>Faure, Mathieu</creatorcontrib><title>Convergence in games with continua of equilibria</title><title>Journal of mathematical economics</title><description>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</description><subject>Best-response dynamics</subject><subject>Continua of Nash equilibria</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Humanities and Social Sciences</subject><subject>Public good</subject><subject>Questions</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QSh45UXrSfPR5ErGUCcMvNHrkKbplrI1W9JO_Pe2dHjr1YHD876c8yB0jyHDgPlTkzV73VnjsxxyyIBlAPwCzbAoSIoZEZdoBgRoSoGLa3QTYwMARQFihmDp25MNG9sam7g22ei9jcm367aJ8W3n2l4nvk7ssXc7Vwanb9FVrXfR3p3nHH29vnwuV-n64-19uVinhgrSpRXBxhhZY0IYZ7XW1JSS5lbaAnhhypxzzLnVjJWSlyUddrbkrDICMNU5JnP0OPVu9U4dgtvr8KO8dmq1WKtxB7nkVAp5GtmHiT0Ef-xt7FTj-9AO56mcUjlAXJCBYhNlgo8x2PqvFoMaRapGnUWqUaQCpgaRQ-55ytnh3ZOzQUXjRl-VC9Z0qvLun4Zf2gh8xQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bervoets, Sebastian</creator><creator>Faure, Mathieu</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope></search><sort><creationdate>20201001</creationdate><title>Convergence in games with continua of equilibria</title><author>Bervoets, Sebastian ; Faure, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d31ccc9f133565faa4cb942e9e7067cb266166ea55b96bb467ceb65dc8014a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Best-response dynamics</topic><topic>Continua of Nash equilibria</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Humanities and Social Sciences</topic><topic>Public good</topic><topic>Questions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bervoets, Sebastian</creatorcontrib><creatorcontrib>Faure, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bervoets, Sebastian</au><au>Faure, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence in games with continua of equilibria</atitle><jtitle>Journal of mathematical economics</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>90</volume><spage>25</spage><epage>30</epage><pages>25-30</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><abstract>In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2020.05.006</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2020-10, Vol.90, p.25-30
issn 0304-4068
1873-1538
language eng
recordid cdi_hal_primary_oai_HAL_hal_02964989v1
source ScienceDirect Journals (5 years ago - present)
subjects Best-response dynamics
Continua of Nash equilibria
Convergence
Dynamical systems
Economics and Finance
Equilibrium
Game theory
Games
Humanities and Social Sciences
Public good
Questions
title Convergence in games with continua of equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20in%20games%20with%20continua%20of%20equilibria&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Bervoets,%20Sebastian&rft.date=2020-10-01&rft.volume=90&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.issn=0304-4068&rft.eissn=1873-1538&rft_id=info:doi/10.1016/j.jmateco.2020.05.006&rft_dat=%3Cproquest_hal_p%3E2449989683%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449989683&rft_id=info:pmid/&rft_els_id=S0304406820300628&rfr_iscdi=true