Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney
To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was sw...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2020-01, Vol.79 (1), p.38-49 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Microbial ecology |
container_volume | 79 |
creator | Pillot, Guillaume Davidson, Sylvain Auria, Richard Combet-Blanc, Yannick Godfroy, Anne Liebgott, Pierre-Pol |
description | To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m⁻² over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H₂ and indirect production from yeast extract and peptone through the production of H₂ and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions. |
doi_str_mv | 10.1007/s00248-019-01381-z |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02962527v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48739903</jstor_id><sourcerecordid>48739903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-dd2e24464b210c9839b75e83297939499effdf4a0e1a27c5712b743b5b2ce8303</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEokvhBZBAlrjAIeB_WcfHdmlZpEUgFSRukZNMdr1K7NROCukj8ZTMNmWROHCwLM38vs_j-ZLkOaNvGaXqXaSUyzylTOMROUtvHyQLJgVPWS6_P0wWlOosFUuenyRPYtxTytSSi8fJiWBUaabVIvn1Jfh6rAbrHfENWY0hgBtIOZGryQ3B97uJnMPwA8CRi58eWqiwugVnK2JcTS4hdCgwg70Bsp56CMMOS6izLSKfbBW8D1vjbOwisY6sYYDg75yxf259Y9uONMF3xJD3AH16BQadaoQOTqYlq53tHExPk0eNaSM8u79Pk2-XF19X63Tz-cPH1dkmraTKhrSuOXApl7LkjFY6F7pUGeSCa6WFllpD09SNNBSY4arKFOOlkqLMSl4hRsVp8mb23Zm26IPtTJgKb2yxPtsUhxrleskzrm4Ysq9ntg_-eoQ4FJ2NFbStceDHWHAucM08yzNEX_2D7v0YHP4EKcRwNimQ4jOFe4sxQHOcgNHikHoxp15g6sVd6sUtil7eW49lB_VR8idmBMQMRGy5LYS_b__X9sWs2sfBh6OrzJXQmgrxG6R4xG8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223139443</pqid></control><display><type>article</type><title>Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Pillot, Guillaume ; Davidson, Sylvain ; Auria, Richard ; Combet-Blanc, Yannick ; Godfroy, Anne ; Liebgott, Pierre-Pol</creator><creatorcontrib>Pillot, Guillaume ; Davidson, Sylvain ; Auria, Richard ; Combet-Blanc, Yannick ; Godfroy, Anne ; Liebgott, Pierre-Pol</creatorcontrib><description>To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m⁻² over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H₂ and indirect production from yeast extract and peptone through the production of H₂ and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-019-01381-z</identifier><identifier>PMID: 31079197</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Acetates ; Acetates - metabolism ; Acetic acid ; Alternating current ; Archaea - chemistry ; Archaea - classification ; Archaea - genetics ; Archaea - physiology ; Biochemical fuel cells ; Biodiversity and Ecology ; Biofilms ; Biomedical and Life Sciences ; Carbon cycle ; Communities ; Deep sea ; Deep sea environments ; Deep water ; Ecology ; Electric currents ; Electricity ; Electrodes ; Electrodes - microbiology ; ENVIRONMENTAL MICROBIOLOGY ; Environmental Sciences ; Fermentation ; Geoecology/Natural Processes ; Graphical representations ; Heterotrophic microorganisms ; Hydrogen - metabolism ; Hydrothermal plumes ; Hydrothermal springs ; Hydrothermal vents ; Hydrothermal Vents - microbiology ; Inoculum ; Interactions ; Life Sciences ; Microbial Ecology ; Microbiology ; Microorganisms ; Nature Conservation ; Organic matter ; Oxidation ; Oxidation-Reduction ; Peptones ; Pyruvic acid ; Pyruvic Acid - metabolism ; Subcultures ; Survival ; Syntrophism ; Vents ; Water Quality/Water Pollution ; Yeast ; Yeasts</subject><ispartof>Microbial ecology, 2020-01, Vol.79 (1), p.38-49</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Microbial Ecology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-dd2e24464b210c9839b75e83297939499effdf4a0e1a27c5712b743b5b2ce8303</citedby><cites>FETCH-LOGICAL-c475t-dd2e24464b210c9839b75e83297939499effdf4a0e1a27c5712b743b5b2ce8303</cites><orcidid>0000-0002-2559-1738 ; 0000-0003-0483-4160 ; 0000-0002-0263-5160 ; 0000-0003-2694-1100 ; 0000-0002-9268-6948 ; 0000-0002-9720-0716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48739903$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48739903$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31079197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02962527$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillot, Guillaume</creatorcontrib><creatorcontrib>Davidson, Sylvain</creatorcontrib><creatorcontrib>Auria, Richard</creatorcontrib><creatorcontrib>Combet-Blanc, Yannick</creatorcontrib><creatorcontrib>Godfroy, Anne</creatorcontrib><creatorcontrib>Liebgott, Pierre-Pol</creatorcontrib><title>Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m⁻² over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H₂ and indirect production from yeast extract and peptone through the production of H₂ and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions.</description><subject>Acetates</subject><subject>Acetates - metabolism</subject><subject>Acetic acid</subject><subject>Alternating current</subject><subject>Archaea - chemistry</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Biochemical fuel cells</subject><subject>Biodiversity and Ecology</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon cycle</subject><subject>Communities</subject><subject>Deep sea</subject><subject>Deep sea environments</subject><subject>Deep water</subject><subject>Ecology</subject><subject>Electric currents</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Electrodes - microbiology</subject><subject>ENVIRONMENTAL MICROBIOLOGY</subject><subject>Environmental Sciences</subject><subject>Fermentation</subject><subject>Geoecology/Natural Processes</subject><subject>Graphical representations</subject><subject>Heterotrophic microorganisms</subject><subject>Hydrogen - metabolism</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal springs</subject><subject>Hydrothermal vents</subject><subject>Hydrothermal Vents - microbiology</subject><subject>Inoculum</subject><subject>Interactions</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nature Conservation</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peptones</subject><subject>Pyruvic acid</subject><subject>Pyruvic Acid - metabolism</subject><subject>Subcultures</subject><subject>Survival</subject><subject>Syntrophism</subject><subject>Vents</subject><subject>Water Quality/Water Pollution</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9u1DAQxiMEokvhBZBAlrjAIeB_WcfHdmlZpEUgFSRukZNMdr1K7NROCukj8ZTMNmWROHCwLM38vs_j-ZLkOaNvGaXqXaSUyzylTOMROUtvHyQLJgVPWS6_P0wWlOosFUuenyRPYtxTytSSi8fJiWBUaabVIvn1Jfh6rAbrHfENWY0hgBtIOZGryQ3B97uJnMPwA8CRi58eWqiwugVnK2JcTS4hdCgwg70Bsp56CMMOS6izLSKfbBW8D1vjbOwisY6sYYDg75yxf259Y9uONMF3xJD3AH16BQadaoQOTqYlq53tHExPk0eNaSM8u79Pk2-XF19X63Tz-cPH1dkmraTKhrSuOXApl7LkjFY6F7pUGeSCa6WFllpD09SNNBSY4arKFOOlkqLMSl4hRsVp8mb23Zm26IPtTJgKb2yxPtsUhxrleskzrm4Ysq9ntg_-eoQ4FJ2NFbStceDHWHAucM08yzNEX_2D7v0YHP4EKcRwNimQ4jOFe4sxQHOcgNHikHoxp15g6sVd6sUtil7eW49lB_VR8idmBMQMRGy5LYS_b__X9sWs2sfBh6OrzJXQmgrxG6R4xG8</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pillot, Guillaume</creator><creator>Davidson, Sylvain</creator><creator>Auria, Richard</creator><creator>Combet-Blanc, Yannick</creator><creator>Godfroy, Anne</creator><creator>Liebgott, Pierre-Pol</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2559-1738</orcidid><orcidid>https://orcid.org/0000-0003-0483-4160</orcidid><orcidid>https://orcid.org/0000-0002-0263-5160</orcidid><orcidid>https://orcid.org/0000-0003-2694-1100</orcidid><orcidid>https://orcid.org/0000-0002-9268-6948</orcidid><orcidid>https://orcid.org/0000-0002-9720-0716</orcidid></search><sort><creationdate>20200101</creationdate><title>Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney</title><author>Pillot, Guillaume ; Davidson, Sylvain ; Auria, Richard ; Combet-Blanc, Yannick ; Godfroy, Anne ; Liebgott, Pierre-Pol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-dd2e24464b210c9839b75e83297939499effdf4a0e1a27c5712b743b5b2ce8303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetates</topic><topic>Acetates - metabolism</topic><topic>Acetic acid</topic><topic>Alternating current</topic><topic>Archaea - chemistry</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Biochemical fuel cells</topic><topic>Biodiversity and Ecology</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon cycle</topic><topic>Communities</topic><topic>Deep sea</topic><topic>Deep sea environments</topic><topic>Deep water</topic><topic>Ecology</topic><topic>Electric currents</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Electrodes - microbiology</topic><topic>ENVIRONMENTAL MICROBIOLOGY</topic><topic>Environmental Sciences</topic><topic>Fermentation</topic><topic>Geoecology/Natural Processes</topic><topic>Graphical representations</topic><topic>Heterotrophic microorganisms</topic><topic>Hydrogen - metabolism</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal springs</topic><topic>Hydrothermal vents</topic><topic>Hydrothermal Vents - microbiology</topic><topic>Inoculum</topic><topic>Interactions</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nature Conservation</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peptones</topic><topic>Pyruvic acid</topic><topic>Pyruvic Acid - metabolism</topic><topic>Subcultures</topic><topic>Survival</topic><topic>Syntrophism</topic><topic>Vents</topic><topic>Water Quality/Water Pollution</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillot, Guillaume</creatorcontrib><creatorcontrib>Davidson, Sylvain</creatorcontrib><creatorcontrib>Auria, Richard</creatorcontrib><creatorcontrib>Combet-Blanc, Yannick</creatorcontrib><creatorcontrib>Godfroy, Anne</creatorcontrib><creatorcontrib>Liebgott, Pierre-Pol</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillot, Guillaume</au><au>Davidson, Sylvain</au><au>Auria, Richard</au><au>Combet-Blanc, Yannick</au><au>Godfroy, Anne</au><au>Liebgott, Pierre-Pol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>79</volume><issue>1</issue><spage>38</spage><epage>49</epage><pages>38-49</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m⁻² over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H₂ and indirect production from yeast extract and peptone through the production of H₂ and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><pmid>31079197</pmid><doi>10.1007/s00248-019-01381-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2559-1738</orcidid><orcidid>https://orcid.org/0000-0003-0483-4160</orcidid><orcidid>https://orcid.org/0000-0002-0263-5160</orcidid><orcidid>https://orcid.org/0000-0003-2694-1100</orcidid><orcidid>https://orcid.org/0000-0002-9268-6948</orcidid><orcidid>https://orcid.org/0000-0002-9720-0716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2020-01, Vol.79 (1), p.38-49 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02962527v1 |
source | Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acetates Acetates - metabolism Acetic acid Alternating current Archaea - chemistry Archaea - classification Archaea - genetics Archaea - physiology Biochemical fuel cells Biodiversity and Ecology Biofilms Biomedical and Life Sciences Carbon cycle Communities Deep sea Deep sea environments Deep water Ecology Electric currents Electricity Electrodes Electrodes - microbiology ENVIRONMENTAL MICROBIOLOGY Environmental Sciences Fermentation Geoecology/Natural Processes Graphical representations Heterotrophic microorganisms Hydrogen - metabolism Hydrothermal plumes Hydrothermal springs Hydrothermal vents Hydrothermal Vents - microbiology Inoculum Interactions Life Sciences Microbial Ecology Microbiology Microorganisms Nature Conservation Organic matter Oxidation Oxidation-Reduction Peptones Pyruvic acid Pyruvic Acid - metabolism Subcultures Survival Syntrophism Vents Water Quality/Water Pollution Yeast Yeasts |
title | Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20Current%20by%20Syntrophy%20Between%20Exoelectrogenic%20and%20Fermentative%20Hyperthermophilic%20Microorganisms%20in%20Heterotrophic%20Biofilm%20from%20a%20Deep-Sea%20Hydrothermal%20Chimney&rft.jtitle=Microbial%20ecology&rft.au=Pillot,%20Guillaume&rft.date=2020-01-01&rft.volume=79&rft.issue=1&rft.spage=38&rft.epage=49&rft.pages=38-49&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-019-01381-z&rft_dat=%3Cjstor_hal_p%3E48739903%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2223139443&rft_id=info:pmid/31079197&rft_jstor_id=48739903&rfr_iscdi=true |