Evidence for localized onset of episodic mass loss in Mira

Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-10, Vol.642, p.A82
Hauptverfasser: Perrin, G., Ridgway, S. T., Lacour, S., Haubois, X., Thiébaut, É., Berger, J. P., Lacasse, M. G., Millan-Gabet, R., Monnier, J. D., Pedretti, E., Ragland, S., Traub, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A82
container_title Astronomy and astrophysics (Berlin)
container_volume 642
creator Perrin, G.
Ridgway, S. T.
Lacour, S.
Haubois, X.
Thiébaut, É.
Berger, J. P.
Lacasse, M. G.
Millan-Gabet, R.
Monnier, J. D.
Pedretti, E.
Ragland, S.
Traub, W.
description Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing of dust nucleation and acceleration. Aims. Interferometric imaging has the potential to constrain the geometry and dynamics of mass loss. High angular resolution studies of various types have shown that LPVs have a distinct core-halo structure. These have also shown that LPV images commonly exhibit a non-circular shape. The nature of this shape and its implications are yet to be understood. Methods. Multi-telescope interferometric measurements taken with the Interferometric Optical Telescope Array (IOTA) provide imagery of the LPV Mira in the H -band. This wavelength region is well suited to studying mass loss given the low continuum opacity, which allows for emission to be observed over a very long path in the stellar atmosphere and envelope. Results. The observed visibilities are consistent with a simple core-halo model to represent the central object and the extended molecular layers but, in addition, they demonstrate a substantial asymmetry. An analysis with image reconstruction software shows that the asymmetry is consistent with a localized absorbing patch. The observed opacity is tentatively associated with small dust grains, which will grow substantially during a multi-year ejection process. Spatial information along with a deduced dust content of the cloud, known mass loss rates, and ejection velocities provide evidence for the pulsational pumping of the extended molecular layers. The cloud may be understood as a spatially local zone of enhanced dust formation, very near to the pulsating halo. The observed mass loss could be provided by several such active regions around the star. Conclusions. This result provides an additional clue for better understanding the clumpiness of dust production in the atmosphere of AGB stars. It is compatible with scenarios where the combination of pulsation and convection play a key role in the process of mass loss.
doi_str_mv 10.1051/0004-6361/202037443
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02962090v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487163783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-21b6e7ccc69b996191d4b10056374c693507fda081cd35874efcbeba2d69ca153</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKu_wEvAk4e1M0k2u-utFLVCxYueQzbJYsp2U5O2oL_eLJVeZpjHx8ybR8gtwgNCiTMAEIXkEmcMGPBKCH5GJig4K6AS8pxMTsQluUppnUeGNZ-Qx6eDt24wjnYh0j4Y3ftfZ2kYktvR0FG39SlYb-hGp5SBXPxA33zU1-Si031yN_99Sj6fnz4Wy2L1_vK6mK8Kw0u5Kxi20lXGGNm0TSOxQStaBChl9plFXkLVWQ01GsvLuhKuM61rNbOyMRpLPiX3x71fulfb6Dc6_qigvVrOV2rUgDWSQQMHzOzdkd3G8L13aafWYR-HbE8xUVeYb9Y8U_xImZj_ia47rUVQY6BqjEuNcalToPwPkotllw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487163783</pqid></control><display><type>article</type><title>Evidence for localized onset of episodic mass loss in Mira</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Perrin, G. ; Ridgway, S. T. ; Lacour, S. ; Haubois, X. ; Thiébaut, É. ; Berger, J. P. ; Lacasse, M. G. ; Millan-Gabet, R. ; Monnier, J. D. ; Pedretti, E. ; Ragland, S. ; Traub, W.</creator><creatorcontrib>Perrin, G. ; Ridgway, S. T. ; Lacour, S. ; Haubois, X. ; Thiébaut, É. ; Berger, J. P. ; Lacasse, M. G. ; Millan-Gabet, R. ; Monnier, J. D. ; Pedretti, E. ; Ragland, S. ; Traub, W.</creatorcontrib><description>Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing of dust nucleation and acceleration. Aims. Interferometric imaging has the potential to constrain the geometry and dynamics of mass loss. High angular resolution studies of various types have shown that LPVs have a distinct core-halo structure. These have also shown that LPV images commonly exhibit a non-circular shape. The nature of this shape and its implications are yet to be understood. Methods. Multi-telescope interferometric measurements taken with the Interferometric Optical Telescope Array (IOTA) provide imagery of the LPV Mira in the H -band. This wavelength region is well suited to studying mass loss given the low continuum opacity, which allows for emission to be observed over a very long path in the stellar atmosphere and envelope. Results. The observed visibilities are consistent with a simple core-halo model to represent the central object and the extended molecular layers but, in addition, they demonstrate a substantial asymmetry. An analysis with image reconstruction software shows that the asymmetry is consistent with a localized absorbing patch. The observed opacity is tentatively associated with small dust grains, which will grow substantially during a multi-year ejection process. Spatial information along with a deduced dust content of the cloud, known mass loss rates, and ejection velocities provide evidence for the pulsational pumping of the extended molecular layers. The cloud may be understood as a spatially local zone of enhanced dust formation, very near to the pulsating halo. The observed mass loss could be provided by several such active regions around the star. Conclusions. This result provides an additional clue for better understanding the clumpiness of dust production in the atmosphere of AGB stars. It is compatible with scenarios where the combination of pulsation and convection play a key role in the process of mass loss.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202037443</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Angular resolution ; Astrochemistry ; Astrophysics ; Asymmetry ; Asymptotic giant branch stars ; Cosmic dust ; Dust ; Ejection ; Galactic evolution ; Image reconstruction ; Interferometry ; Nucleation ; Opacity ; Physics ; Spatial data ; Stellar atmospheres ; Stellar evolution ; Variable stars</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-10, Vol.642, p.A82</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-21b6e7ccc69b996191d4b10056374c693507fda081cd35874efcbeba2d69ca153</citedby><cites>FETCH-LOGICAL-c356t-21b6e7ccc69b996191d4b10056374c693507fda081cd35874efcbeba2d69ca153</cites><orcidid>0000-0002-6214-0282 ; 0000-0001-8627-9708 ; 0000-0003-0447-5866 ; 0000-0001-7878-7278 ; 0000-0002-3380-3307 ; 0000-0002-6948-0263 ; 0000-0003-2557-7132 ; 0000-0003-0680-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02962090$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perrin, G.</creatorcontrib><creatorcontrib>Ridgway, S. T.</creatorcontrib><creatorcontrib>Lacour, S.</creatorcontrib><creatorcontrib>Haubois, X.</creatorcontrib><creatorcontrib>Thiébaut, É.</creatorcontrib><creatorcontrib>Berger, J. P.</creatorcontrib><creatorcontrib>Lacasse, M. G.</creatorcontrib><creatorcontrib>Millan-Gabet, R.</creatorcontrib><creatorcontrib>Monnier, J. D.</creatorcontrib><creatorcontrib>Pedretti, E.</creatorcontrib><creatorcontrib>Ragland, S.</creatorcontrib><creatorcontrib>Traub, W.</creatorcontrib><title>Evidence for localized onset of episodic mass loss in Mira</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing of dust nucleation and acceleration. Aims. Interferometric imaging has the potential to constrain the geometry and dynamics of mass loss. High angular resolution studies of various types have shown that LPVs have a distinct core-halo structure. These have also shown that LPV images commonly exhibit a non-circular shape. The nature of this shape and its implications are yet to be understood. Methods. Multi-telescope interferometric measurements taken with the Interferometric Optical Telescope Array (IOTA) provide imagery of the LPV Mira in the H -band. This wavelength region is well suited to studying mass loss given the low continuum opacity, which allows for emission to be observed over a very long path in the stellar atmosphere and envelope. Results. The observed visibilities are consistent with a simple core-halo model to represent the central object and the extended molecular layers but, in addition, they demonstrate a substantial asymmetry. An analysis with image reconstruction software shows that the asymmetry is consistent with a localized absorbing patch. The observed opacity is tentatively associated with small dust grains, which will grow substantially during a multi-year ejection process. Spatial information along with a deduced dust content of the cloud, known mass loss rates, and ejection velocities provide evidence for the pulsational pumping of the extended molecular layers. The cloud may be understood as a spatially local zone of enhanced dust formation, very near to the pulsating halo. The observed mass loss could be provided by several such active regions around the star. Conclusions. This result provides an additional clue for better understanding the clumpiness of dust production in the atmosphere of AGB stars. It is compatible with scenarios where the combination of pulsation and convection play a key role in the process of mass loss.</description><subject>Angular resolution</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Asymmetry</subject><subject>Asymptotic giant branch stars</subject><subject>Cosmic dust</subject><subject>Dust</subject><subject>Ejection</subject><subject>Galactic evolution</subject><subject>Image reconstruction</subject><subject>Interferometry</subject><subject>Nucleation</subject><subject>Opacity</subject><subject>Physics</subject><subject>Spatial data</subject><subject>Stellar atmospheres</subject><subject>Stellar evolution</subject><subject>Variable stars</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKu_wEvAk4e1M0k2u-utFLVCxYueQzbJYsp2U5O2oL_eLJVeZpjHx8ybR8gtwgNCiTMAEIXkEmcMGPBKCH5GJig4K6AS8pxMTsQluUppnUeGNZ-Qx6eDt24wjnYh0j4Y3ftfZ2kYktvR0FG39SlYb-hGp5SBXPxA33zU1-Si031yN_99Sj6fnz4Wy2L1_vK6mK8Kw0u5Kxi20lXGGNm0TSOxQStaBChl9plFXkLVWQ01GsvLuhKuM61rNbOyMRpLPiX3x71fulfb6Dc6_qigvVrOV2rUgDWSQQMHzOzdkd3G8L13aafWYR-HbE8xUVeYb9Y8U_xImZj_ia47rUVQY6BqjEuNcalToPwPkotllw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Perrin, G.</creator><creator>Ridgway, S. T.</creator><creator>Lacour, S.</creator><creator>Haubois, X.</creator><creator>Thiébaut, É.</creator><creator>Berger, J. P.</creator><creator>Lacasse, M. G.</creator><creator>Millan-Gabet, R.</creator><creator>Monnier, J. D.</creator><creator>Pedretti, E.</creator><creator>Ragland, S.</creator><creator>Traub, W.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6214-0282</orcidid><orcidid>https://orcid.org/0000-0001-8627-9708</orcidid><orcidid>https://orcid.org/0000-0003-0447-5866</orcidid><orcidid>https://orcid.org/0000-0001-7878-7278</orcidid><orcidid>https://orcid.org/0000-0002-3380-3307</orcidid><orcidid>https://orcid.org/0000-0002-6948-0263</orcidid><orcidid>https://orcid.org/0000-0003-2557-7132</orcidid><orcidid>https://orcid.org/0000-0003-0680-0167</orcidid></search><sort><creationdate>20201001</creationdate><title>Evidence for localized onset of episodic mass loss in Mira</title><author>Perrin, G. ; Ridgway, S. T. ; Lacour, S. ; Haubois, X. ; Thiébaut, É. ; Berger, J. P. ; Lacasse, M. G. ; Millan-Gabet, R. ; Monnier, J. D. ; Pedretti, E. ; Ragland, S. ; Traub, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-21b6e7ccc69b996191d4b10056374c693507fda081cd35874efcbeba2d69ca153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular resolution</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Asymmetry</topic><topic>Asymptotic giant branch stars</topic><topic>Cosmic dust</topic><topic>Dust</topic><topic>Ejection</topic><topic>Galactic evolution</topic><topic>Image reconstruction</topic><topic>Interferometry</topic><topic>Nucleation</topic><topic>Opacity</topic><topic>Physics</topic><topic>Spatial data</topic><topic>Stellar atmospheres</topic><topic>Stellar evolution</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perrin, G.</creatorcontrib><creatorcontrib>Ridgway, S. T.</creatorcontrib><creatorcontrib>Lacour, S.</creatorcontrib><creatorcontrib>Haubois, X.</creatorcontrib><creatorcontrib>Thiébaut, É.</creatorcontrib><creatorcontrib>Berger, J. P.</creatorcontrib><creatorcontrib>Lacasse, M. G.</creatorcontrib><creatorcontrib>Millan-Gabet, R.</creatorcontrib><creatorcontrib>Monnier, J. D.</creatorcontrib><creatorcontrib>Pedretti, E.</creatorcontrib><creatorcontrib>Ragland, S.</creatorcontrib><creatorcontrib>Traub, W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrin, G.</au><au>Ridgway, S. T.</au><au>Lacour, S.</au><au>Haubois, X.</au><au>Thiébaut, É.</au><au>Berger, J. P.</au><au>Lacasse, M. G.</au><au>Millan-Gabet, R.</au><au>Monnier, J. D.</au><au>Pedretti, E.</au><au>Ragland, S.</au><au>Traub, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for localized onset of episodic mass loss in Mira</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>642</volume><spage>A82</spage><pages>A82-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Mass loss from long-period variable stars (LPV) is an important contributor to the evolution of galactic abundances. Dust formation is understood to play an essential role in mass loss. It has, however, proven difficult to develop measurements that strongly constrain the location and timing of dust nucleation and acceleration. Aims. Interferometric imaging has the potential to constrain the geometry and dynamics of mass loss. High angular resolution studies of various types have shown that LPVs have a distinct core-halo structure. These have also shown that LPV images commonly exhibit a non-circular shape. The nature of this shape and its implications are yet to be understood. Methods. Multi-telescope interferometric measurements taken with the Interferometric Optical Telescope Array (IOTA) provide imagery of the LPV Mira in the H -band. This wavelength region is well suited to studying mass loss given the low continuum opacity, which allows for emission to be observed over a very long path in the stellar atmosphere and envelope. Results. The observed visibilities are consistent with a simple core-halo model to represent the central object and the extended molecular layers but, in addition, they demonstrate a substantial asymmetry. An analysis with image reconstruction software shows that the asymmetry is consistent with a localized absorbing patch. The observed opacity is tentatively associated with small dust grains, which will grow substantially during a multi-year ejection process. Spatial information along with a deduced dust content of the cloud, known mass loss rates, and ejection velocities provide evidence for the pulsational pumping of the extended molecular layers. The cloud may be understood as a spatially local zone of enhanced dust formation, very near to the pulsating halo. The observed mass loss could be provided by several such active regions around the star. Conclusions. This result provides an additional clue for better understanding the clumpiness of dust production in the atmosphere of AGB stars. It is compatible with scenarios where the combination of pulsation and convection play a key role in the process of mass loss.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202037443</doi><orcidid>https://orcid.org/0000-0002-6214-0282</orcidid><orcidid>https://orcid.org/0000-0001-8627-9708</orcidid><orcidid>https://orcid.org/0000-0003-0447-5866</orcidid><orcidid>https://orcid.org/0000-0001-7878-7278</orcidid><orcidid>https://orcid.org/0000-0002-3380-3307</orcidid><orcidid>https://orcid.org/0000-0002-6948-0263</orcidid><orcidid>https://orcid.org/0000-0003-2557-7132</orcidid><orcidid>https://orcid.org/0000-0003-0680-0167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-10, Vol.642, p.A82
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02962090v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Angular resolution
Astrochemistry
Astrophysics
Asymmetry
Asymptotic giant branch stars
Cosmic dust
Dust
Ejection
Galactic evolution
Image reconstruction
Interferometry
Nucleation
Opacity
Physics
Spatial data
Stellar atmospheres
Stellar evolution
Variable stars
title Evidence for localized onset of episodic mass loss in Mira
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20localized%20onset%20of%20episodic%20mass%20loss%20in%20Mira&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Perrin,%20G.&rft.date=2020-10-01&rft.volume=642&rft.spage=A82&rft.pages=A82-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202037443&rft_dat=%3Cproquest_hal_p%3E2487163783%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487163783&rft_id=info:pmid/&rfr_iscdi=true