Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm
Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to a...
Gespeichert in:
Veröffentlicht in: | Environ. Sci. Technol 2020-02, Vol.54 (3), p.1533-1544 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1544 |
---|---|
container_issue | 3 |
container_start_page | 1533 |
container_title | Environ. Sci. Technol |
container_volume | 54 |
creator | Avellan, Astrid Simonin, Marie Anderson, Steven M Geitner, Nicholas K Bossa, Nathan Spielman-Sun, Eleanor Bernhardt, Emily S Castellon, Benjamin T Colman, Benjamin P Cooper, Jane L Ho, Mengchi Hochella, Michael F Hsu-Kim, Heileen Inoue, Sayako King, Ryan S Laughton, Stephanie Matson, Cole W Perrotta, Brittany G Richardson, Curtis J Unrine, Jason M Wiesner, Mark R Lowry, Gregory V |
description | Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs. |
doi_str_mv | 10.1021/acs.est.9b05097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02958362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352592746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-63767d6980d7c0d0eed9c09ed441594f4262d6b31c6ac2dbb14dd19df44421713</originalsourceid><addsrcrecordid>eNp1kktvEzEUhS0EoiGwZocsugGhSf2ah5dtaFqkABIUwc5y7DuNq5lxsJ1W-Sf8XDwkZIHEyq_vHPv6HoReUjKjhNEzbeIMYprJFSmJrB-hCS0ZKcqmpI_RhBDKC8mrHyfoWYx3hBDGSfMUnXAqS8plPUG_3ru2hQBDcrrDX0Cb5O5d2mHf4rnfbCAUWA8WX_nOFhc6gsWf9OB7nSBkRczQkILPk5s1uIC_go5-yFYXzt-CN2voncnL-c50brj947XIYuwGrPEiQFw_jF74O6RuPPwI0Rsf--foSZv94cVhnKJvi8ub-XWx_Hz1YX6-LLSoeCoqXle1rWRDbG2IJQBWGiLBCkFLKVrBKmarFaem0obZ1YoKa6m0rRCC0ZryKXq99_UxORWNS2DWxg8DmKRoRUjDRujtHlrrTm2C63XYKa-duj5fqnGPMFk2vGL3I_tmz26C_7nNzVG9iwa6XB34bVSMC1qxuhEjevoPeue3If_eSJWslKzORU7R2Z4ywccYoD2-gBI1pkDlFKhRfUhBVrw6-G5XPdgj_7ftGXi3B0bl8c7_2f0Gjym8uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352592746</pqid></control><display><type>article</type><title>Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm</title><source>MEDLINE</source><source>ACS Publications</source><creator>Avellan, Astrid ; Simonin, Marie ; Anderson, Steven M ; Geitner, Nicholas K ; Bossa, Nathan ; Spielman-Sun, Eleanor ; Bernhardt, Emily S ; Castellon, Benjamin T ; Colman, Benjamin P ; Cooper, Jane L ; Ho, Mengchi ; Hochella, Michael F ; Hsu-Kim, Heileen ; Inoue, Sayako ; King, Ryan S ; Laughton, Stephanie ; Matson, Cole W ; Perrotta, Brittany G ; Richardson, Curtis J ; Unrine, Jason M ; Wiesner, Mark R ; Lowry, Gregory V</creator><creatorcontrib>Avellan, Astrid ; Simonin, Marie ; Anderson, Steven M ; Geitner, Nicholas K ; Bossa, Nathan ; Spielman-Sun, Eleanor ; Bernhardt, Emily S ; Castellon, Benjamin T ; Colman, Benjamin P ; Cooper, Jane L ; Ho, Mengchi ; Hochella, Michael F ; Hsu-Kim, Heileen ; Inoue, Sayako ; King, Ryan S ; Laughton, Stephanie ; Matson, Cole W ; Perrotta, Brittany G ; Richardson, Curtis J ; Unrine, Jason M ; Wiesner, Mark R ; Lowry, Gregory V ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05097</identifier><identifier>PMID: 31951397</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accumulation ; Aquatic environment ; Aquatic plants ; Biogeochemical cycles ; Biological activity ; Complexity ; Copper ; Cycles ; Environmental changes ; Environmental Sciences ; Fresh Water ; Gold ; Macrophytes ; Mesocosms ; Metal Nanoparticles ; Nanomaterials ; Nanoparticles ; Nanostructures ; Nanotechnology ; Organic chemistry ; Organic matter ; Reactivity ; Redox properties ; Seasonal variations ; Seasons ; Sediments ; Speciation ; Sulfide ; Terrestrial environments ; Water circulation ; Water column ; Wetlands</subject><ispartof>Environ. Sci. Technol, 2020-02, Vol.54 (3), p.1533-1544</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-63767d6980d7c0d0eed9c09ed441594f4262d6b31c6ac2dbb14dd19df44421713</citedby><cites>FETCH-LOGICAL-a463t-63767d6980d7c0d0eed9c09ed441594f4262d6b31c6ac2dbb14dd19df44421713</cites><orcidid>0000-0002-8373-6587 ; 0000-0003-3012-5261 ; 0000-0001-6081-4389 ; 0000-0001-6876-9666 ; 0000-0001-8883-076X ; 0000-0003-1493-881X ; 0000-0001-7152-7852 ; 0000-0001-9626-2969 ; 0000-0001-8599-008X ; 0000-0002-6472-9357 ; 0000-0003-4313-372X ; 0000-0003-0675-4308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05097$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05097$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31951397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02958362$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600821$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Avellan, Astrid</creatorcontrib><creatorcontrib>Simonin, Marie</creatorcontrib><creatorcontrib>Anderson, Steven M</creatorcontrib><creatorcontrib>Geitner, Nicholas K</creatorcontrib><creatorcontrib>Bossa, Nathan</creatorcontrib><creatorcontrib>Spielman-Sun, Eleanor</creatorcontrib><creatorcontrib>Bernhardt, Emily S</creatorcontrib><creatorcontrib>Castellon, Benjamin T</creatorcontrib><creatorcontrib>Colman, Benjamin P</creatorcontrib><creatorcontrib>Cooper, Jane L</creatorcontrib><creatorcontrib>Ho, Mengchi</creatorcontrib><creatorcontrib>Hochella, Michael F</creatorcontrib><creatorcontrib>Hsu-Kim, Heileen</creatorcontrib><creatorcontrib>Inoue, Sayako</creatorcontrib><creatorcontrib>King, Ryan S</creatorcontrib><creatorcontrib>Laughton, Stephanie</creatorcontrib><creatorcontrib>Matson, Cole W</creatorcontrib><creatorcontrib>Perrotta, Brittany G</creatorcontrib><creatorcontrib>Richardson, Curtis J</creatorcontrib><creatorcontrib>Unrine, Jason M</creatorcontrib><creatorcontrib>Wiesner, Mark R</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm</title><title>Environ. Sci. Technol</title><addtitle>Environ. Sci. Technol</addtitle><description>Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.</description><subject>Accumulation</subject><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Biogeochemical cycles</subject><subject>Biological activity</subject><subject>Complexity</subject><subject>Copper</subject><subject>Cycles</subject><subject>Environmental changes</subject><subject>Environmental Sciences</subject><subject>Fresh Water</subject><subject>Gold</subject><subject>Macrophytes</subject><subject>Mesocosms</subject><subject>Metal Nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Organic matter</subject><subject>Reactivity</subject><subject>Redox properties</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Sediments</subject><subject>Speciation</subject><subject>Sulfide</subject><subject>Terrestrial environments</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Wetlands</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kktvEzEUhS0EoiGwZocsugGhSf2ah5dtaFqkABIUwc5y7DuNq5lxsJ1W-Sf8XDwkZIHEyq_vHPv6HoReUjKjhNEzbeIMYprJFSmJrB-hCS0ZKcqmpI_RhBDKC8mrHyfoWYx3hBDGSfMUnXAqS8plPUG_3ru2hQBDcrrDX0Cb5O5d2mHf4rnfbCAUWA8WX_nOFhc6gsWf9OB7nSBkRczQkILPk5s1uIC_go5-yFYXzt-CN2voncnL-c50brj947XIYuwGrPEiQFw_jF74O6RuPPwI0Rsf--foSZv94cVhnKJvi8ub-XWx_Hz1YX6-LLSoeCoqXle1rWRDbG2IJQBWGiLBCkFLKVrBKmarFaem0obZ1YoKa6m0rRCC0ZryKXq99_UxORWNS2DWxg8DmKRoRUjDRujtHlrrTm2C63XYKa-duj5fqnGPMFk2vGL3I_tmz26C_7nNzVG9iwa6XB34bVSMC1qxuhEjevoPeue3If_eSJWslKzORU7R2Z4ywccYoD2-gBI1pkDlFKhRfUhBVrw6-G5XPdgj_7ftGXi3B0bl8c7_2f0Gjym8uQ</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Avellan, Astrid</creator><creator>Simonin, Marie</creator><creator>Anderson, Steven M</creator><creator>Geitner, Nicholas K</creator><creator>Bossa, Nathan</creator><creator>Spielman-Sun, Eleanor</creator><creator>Bernhardt, Emily S</creator><creator>Castellon, Benjamin T</creator><creator>Colman, Benjamin P</creator><creator>Cooper, Jane L</creator><creator>Ho, Mengchi</creator><creator>Hochella, Michael F</creator><creator>Hsu-Kim, Heileen</creator><creator>Inoue, Sayako</creator><creator>King, Ryan S</creator><creator>Laughton, Stephanie</creator><creator>Matson, Cole W</creator><creator>Perrotta, Brittany G</creator><creator>Richardson, Curtis J</creator><creator>Unrine, Jason M</creator><creator>Wiesner, Mark R</creator><creator>Lowry, Gregory V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8373-6587</orcidid><orcidid>https://orcid.org/0000-0003-3012-5261</orcidid><orcidid>https://orcid.org/0000-0001-6081-4389</orcidid><orcidid>https://orcid.org/0000-0001-6876-9666</orcidid><orcidid>https://orcid.org/0000-0001-8883-076X</orcidid><orcidid>https://orcid.org/0000-0003-1493-881X</orcidid><orcidid>https://orcid.org/0000-0001-7152-7852</orcidid><orcidid>https://orcid.org/0000-0001-9626-2969</orcidid><orcidid>https://orcid.org/0000-0001-8599-008X</orcidid><orcidid>https://orcid.org/0000-0002-6472-9357</orcidid><orcidid>https://orcid.org/0000-0003-4313-372X</orcidid><orcidid>https://orcid.org/0000-0003-0675-4308</orcidid></search><sort><creationdate>20200204</creationdate><title>Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm</title><author>Avellan, Astrid ; Simonin, Marie ; Anderson, Steven M ; Geitner, Nicholas K ; Bossa, Nathan ; Spielman-Sun, Eleanor ; Bernhardt, Emily S ; Castellon, Benjamin T ; Colman, Benjamin P ; Cooper, Jane L ; Ho, Mengchi ; Hochella, Michael F ; Hsu-Kim, Heileen ; Inoue, Sayako ; King, Ryan S ; Laughton, Stephanie ; Matson, Cole W ; Perrotta, Brittany G ; Richardson, Curtis J ; Unrine, Jason M ; Wiesner, Mark R ; Lowry, Gregory V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-63767d6980d7c0d0eed9c09ed441594f4262d6b31c6ac2dbb14dd19df44421713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Biogeochemical cycles</topic><topic>Biological activity</topic><topic>Complexity</topic><topic>Copper</topic><topic>Cycles</topic><topic>Environmental changes</topic><topic>Environmental Sciences</topic><topic>Fresh Water</topic><topic>Gold</topic><topic>Macrophytes</topic><topic>Mesocosms</topic><topic>Metal Nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Organic matter</topic><topic>Reactivity</topic><topic>Redox properties</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Sediments</topic><topic>Speciation</topic><topic>Sulfide</topic><topic>Terrestrial environments</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avellan, Astrid</creatorcontrib><creatorcontrib>Simonin, Marie</creatorcontrib><creatorcontrib>Anderson, Steven M</creatorcontrib><creatorcontrib>Geitner, Nicholas K</creatorcontrib><creatorcontrib>Bossa, Nathan</creatorcontrib><creatorcontrib>Spielman-Sun, Eleanor</creatorcontrib><creatorcontrib>Bernhardt, Emily S</creatorcontrib><creatorcontrib>Castellon, Benjamin T</creatorcontrib><creatorcontrib>Colman, Benjamin P</creatorcontrib><creatorcontrib>Cooper, Jane L</creatorcontrib><creatorcontrib>Ho, Mengchi</creatorcontrib><creatorcontrib>Hochella, Michael F</creatorcontrib><creatorcontrib>Hsu-Kim, Heileen</creatorcontrib><creatorcontrib>Inoue, Sayako</creatorcontrib><creatorcontrib>King, Ryan S</creatorcontrib><creatorcontrib>Laughton, Stephanie</creatorcontrib><creatorcontrib>Matson, Cole W</creatorcontrib><creatorcontrib>Perrotta, Brittany G</creatorcontrib><creatorcontrib>Richardson, Curtis J</creatorcontrib><creatorcontrib>Unrine, Jason M</creatorcontrib><creatorcontrib>Wiesner, Mark R</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Environ. Sci. Technol</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avellan, Astrid</au><au>Simonin, Marie</au><au>Anderson, Steven M</au><au>Geitner, Nicholas K</au><au>Bossa, Nathan</au><au>Spielman-Sun, Eleanor</au><au>Bernhardt, Emily S</au><au>Castellon, Benjamin T</au><au>Colman, Benjamin P</au><au>Cooper, Jane L</au><au>Ho, Mengchi</au><au>Hochella, Michael F</au><au>Hsu-Kim, Heileen</au><au>Inoue, Sayako</au><au>King, Ryan S</au><au>Laughton, Stephanie</au><au>Matson, Cole W</au><au>Perrotta, Brittany G</au><au>Richardson, Curtis J</au><au>Unrine, Jason M</au><au>Wiesner, Mark R</au><au>Lowry, Gregory V</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm</atitle><jtitle>Environ. Sci. Technol</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>1533</spage><epage>1544</epage><pages>1533-1544</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31951397</pmid><doi>10.1021/acs.est.9b05097</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8373-6587</orcidid><orcidid>https://orcid.org/0000-0003-3012-5261</orcidid><orcidid>https://orcid.org/0000-0001-6081-4389</orcidid><orcidid>https://orcid.org/0000-0001-6876-9666</orcidid><orcidid>https://orcid.org/0000-0001-8883-076X</orcidid><orcidid>https://orcid.org/0000-0003-1493-881X</orcidid><orcidid>https://orcid.org/0000-0001-7152-7852</orcidid><orcidid>https://orcid.org/0000-0001-9626-2969</orcidid><orcidid>https://orcid.org/0000-0001-8599-008X</orcidid><orcidid>https://orcid.org/0000-0002-6472-9357</orcidid><orcidid>https://orcid.org/0000-0003-4313-372X</orcidid><orcidid>https://orcid.org/0000-0003-0675-4308</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environ. Sci. Technol, 2020-02, Vol.54 (3), p.1533-1544 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02958362v1 |
source | MEDLINE; ACS Publications |
subjects | Accumulation Aquatic environment Aquatic plants Biogeochemical cycles Biological activity Complexity Copper Cycles Environmental changes Environmental Sciences Fresh Water Gold Macrophytes Mesocosms Metal Nanoparticles Nanomaterials Nanoparticles Nanostructures Nanotechnology Organic chemistry Organic matter Reactivity Redox properties Seasonal variations Seasons Sediments Speciation Sulfide Terrestrial environments Water circulation Water column Wetlands |
title | Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Reactivity%20of%20Copper-%20and%20Gold-Based%20Nanomaterials%20Controls%20Their%20Seasonal%20Biogeochemical%20Cycling%20and%20Fate%20in%20a%20Freshwater%20Wetland%20Mesocosm&rft.jtitle=Environ.%20Sci.%20Technol&rft.au=Avellan,%20Astrid&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-02-04&rft.volume=54&rft.issue=3&rft.spage=1533&rft.epage=1544&rft.pages=1533-1544&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05097&rft_dat=%3Cproquest_osti_%3E2352592746%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352592746&rft_id=info:pmid/31951397&rfr_iscdi=true |